【摘 要】针对太赫兹大规模MIMO系统,提出一种基于量子机器学习的预编码方案,该方案以系统可达和速率最大为目标,通过将通信系统中的优化问题建模为量子系统中的哈密顿量,将最优预编码的设计问题转化为获取量子系统哈密顿量的基态问题。进而利用变分量子本征求解器,结合经典机器学习的优化算法,通过训练获得最优的参数化量子线路,最后从量子线路中提取出基态,即对应于最优的预编码矩阵。经Google公司的tensorflow-quantum量子机器学习平台验证分析,提出的方案能获得指数级加速,性能也接近于经典的基于SVD的预编码方案。
【关键词】太赫兹大规模MIMO;变分量子本征值求解器;量子变分算法;预编码
0 引言
太赫兹和大规模MIMO技术是当前5G和面向6G通信的关键技术。太赫兹通信具有大带宽和传输速率高等特点,面向太赫兹频段的通信技术有望解决当前无线通信系统频谱稀缺和容量限制的问题。大规模MIMO技术是对第四代无线通信技术中的MIMO技术的延伸,它从空间上提升了系统容量,提高了通信系统的性能。但随着大规模MIMO中天线数的增大,算法复杂度以及实现的困难程度也会大幅增大,对于研究如何降低算法复杂度和如何减少开销是当下研究的重点。另一方面,量子计算与机器学习的结合成为新的交叉研究领域。量子计算由于其高并行性,n个量子比特能够计算传统通信中2n维的矩阵,能够大大降低传统机器学习算法的复杂度,在目前中等规模的含噪量子计算机上,可以接近传统算法的性能。因此,结合量子机器学习的无线通信技术将逐渐成为基于人工智能的6G无线通信研究的一个可能关注点。本文创新性地提出将量子机器学习应用于太赫兹大规模MIMO系统的预编码设计中,探索人工智能与6G通信具体技术环节结合的新方式。
在MIMO系统中,为了抑制信号干扰的影响,预编码技术成为解决问题的关键。预编码方案通常分为两种:全数字预编码和混合预编码。全数字预编码可以同时控制传输信号的相位和幅度,在单用户系统和多用户系统中都可以使用。根据处理方式是否线性,可以将全数字预编码划分为线性预编码和非线性预编码。线性预编码包括匹配滤波(MF)、奇异值分解(SVD)、迫零预编码(ZF)、最小均方误差预编码(MMSE)等。非线性预编码主要有脏纸编码(DPC)[1]、和汤姆林森-哈拉希玛预编码(THP)[2]。在大规模MIMO系统中,混合预编码受到广泛的关注。在单用户系统中,文献[3