摘要
随着大数据和人工智能的蓬勃发展,如何保护数据安全已然成为亟需解决的问题。在此背景下,隐私计算技术提供了一种新型的数据要素流通模式。结合大数据、人工智能、密码学,提出一种基于知识联邦的数据要素流通创新体系以解决当前数据要素流通面临的初级业务问题,以及不同等级数据的安全性和隐私性问题,充分发挥数据的业务价值,并实现量化,通过数据价值评估推进数据要素市场流通的良性循环。
关键词: 数据要素流通; 隐私计算; 知识联邦; 数据安全
0 引言
近年来数字经济蓬勃发展,数据成为信息化时代的重要生产力,数据要素作为核心引擎,是推动数字经济深化发展的关键。2023年2月,中共中央、国务院印发的《数字中国建设整体布局规划》指出,数字基础设施和数据资源全面赋能经济社会发展,同时要构建数据技术创新体系。在实际应用中,如何安全、高效、合法、合规地使用数据,连通“数据孤岛”,解决数据要素和价值的流通,是发挥数据要素价值面临的主要挑战。针对数据要素流通过程中的数据安全、隐私保护等难题,本文介绍一种基于知识联邦的数据要素流通创新体系,从安全合规和价值流通等方面着手,为攻破数据要素流通、市场化、标准化的难点寻求理论突破和实践落地。面对数据定价体系尚未形成、交易机制仍待完善的现状,该创新体系致力于数据安全和隐私保护,针对数据的不同分级,发挥数据要素的分层价值,满足初级数据要素流通的需求,并结合人工智能构建知识推理和演绎的高阶价值流通范式,将数据提炼为知识,在保护数据隐私的前提下,打破“数据孤岛”困境,实现安全、可信、可控的数据要素流通。
1 数据要素流通
随着二十一世纪数据科学的蓬勃发展和人工智能技术的广泛应用,数据经济和大数据产业开始高速发展,数据已经成为重要的生产要素之一,并且已经在金融、医疗、政务、工业、互联网等领域,深度融入企业的生产过程。数据的快速积累和交换促使跨企业、跨机构的初级数据要素交易市场已经初步形成,同时各种问题也开始凸显,包括滥用数据使用权益、数据垄断、不正当竞争、数据安全风险和数据隐私泄露等,阻碍数据价值潜力的释放。为培育新型的数据要素流通市场,同盾科技有限公司(简称“同盾科技”)提出了基于知识联邦的数据要素流通创新体系,在保护数据安全和隐私的前提下,建立统一开放的标准化平台,旨在形成良好的数据要素流通生态,通过公开的数据要素价值衡量方式,实现公平公正的数据要素交易模式,以及数据、算法安全治理和应用的标准化及可定制化。
2 数据要素发展现状
2.1 数据要素的特征
区别于传统的生产要素,数据要素具有虚拟性、可编程性和广泛赋能性[1]。
虚拟性是指数据要素的本质是将事件、信息通过数字编码形式记录在数字存储设备中,实现数字孪生后的数据虚拟化生产。虚拟性实现了要素数字化,可促进劳动力、资金、技术等要素在垂直和横向领域的合理配置,提升全要素生产率,是数据要素区别于其他生产要素的关键。
可编程性是指要素数字化使数据要素天然具备可编程性,进而多层次地应用在业务场景中。数据依赖云计算、互联网、算力以及算法的迅速扩展和深度探索,可以打破传统时空的限制,从而使数据以虚拟或非虚拟形态聚合,进行动态响应智能决策,实现敏捷生产。
广泛赋能性是指随着国家的号召和各行业领域数字化快速转型,数据要素已然渗透到生产中各个环节,打通生产、分配、流通、消费各环节,驱动管理机制、组织形态、生产方式、商业模式的深刻变革,为产业提质降本增效、政府治理体系和治理能力现代化广泛赋能。
2.2 数据要素流通的现有模式
数据要素流通依赖于数据要素市场。数据要素市场是数据要素在交换和流通过程中形成的交易体,将尚未完全由市场配置的数据要素转向由市场配置的动态过程,目的是形成以市场为根本调配机制,实现数据流动的价值或数据在流动中产生价值。
从2000年至今,经历了原始的数据买卖、通过应用程序接口或数据包产品方式进行数据调用、以权限管控的数据沙箱环境进行建模或分析应用、以隐私计算技术支持联合建模应用等不同阶段,数据流通的方式从最初的数据直接购买,逐渐发展为同时关注数据质量和隐私安全的数据价值应用。针对数据隐私安全和归属权等问题,从2017年至今,国内涌现出一批以多方安全计算[2]、联邦学习[3]、可信执行环境[4]等隐私计算技术为基础的数据要素应用产品[5],在保护各方原始数据不出本地的前提下,以安全对齐[6]、联合建模、联合预测、联合统计、联合计算或安全查询[7]等方式,实现数据要素价值的共享。结合新型隐私计算技术和市场化的数据交易市场模式,发展基于隐私保护的数据要素共享体系,合法合规地进行数据要素价值的市场化流通,将是建设数据要素市场的主流趋势。
2.3 数据要素流通存在的问题
我国的数据要素流通及市场化目前处于发展的起步阶段,在数据交易、数据确权、数据定价等各环节均面临着一系列问题和挑战,迫切需要通过制定规范以及应用相关的技术手段来突破障碍,推动数据要素流通与市场化进程[8]。