目录
摘要
以物联网、移动互联网为核心的服务平台加速发展,数以亿计的终端用户通过实时视频进行通信,实时视频已成为人们数字化生活中不可替代的核心工具。然而,互联网络呈现高动态、强异构的特性,对实时视频的流控技术提出了严格要求,用户体验质量仍然不佳。设计了适用于异构网络环境的强化学习驱动的自适应流控算法、研发了移动终端训练技术以降低服务端开销,并对算法的设计及结构进行了深入的评测研究。实验表明,所设计的自适应流控算法可以有效地预测网络带宽,相较于国际代表性的流控算法,将预测带宽误差降低了48.48%。有效的带宽预测进一步提升了视频用户体验质量,如视频流畅度提升了 60.65%、视频清晰度提升了 16.52%。此外,测评分析可为实时视频流优化方案提供经验性指导,有力推动智能视频应用的发展。
关键词: 实时视频 ; 自适应流控 ; 体验质量 ; 强化学习 ; 终端训练