结合深度乐谱特征融合的钢琴指法生成方法

本文提出一种结合深度乐谱特征融合的钢琴指法生成方法,利用Word2Vec-CBOW和BiLSTM-CRF模型,同时考虑音高和速度信息,提升了指法生成的正确率。实验表明,该方法在匹配率和最高匹配率上优于传统的统计学习和深度学习方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要: 指法是钢琴演奏的关键技术,但是除了初学者的教科书外,大多数乐谱都没有指法注释。目前用于钢琴指法自动生成的隐马尔可夫模型(hidden Markov model,HMM)和长短时记忆网络(long short-term memory,LSTM)模型,仅针对乐谱的音高建立模型,忽略同样影响指法的速度信息,存在对乐谱综合特征提取能力不足、生成的指法正确率低等问题。针对这些问题,设计一种可以同时利用乐谱的音高信息与速度信息的特征提取方法,并引入Word2Vec-CBOW(continuous bag-of-words)模型得到融合特征向量,根据人体左右手镜像对称的特点对原始数据进行左右手序列的数据增强与联合训练,最后结合双向长短时记忆网络−条件随机场(bidirectional LSTM conditional random field,BiLSTM-CRF)模型实现指法的生成。实验结果显示,本文提出的算法相比常用的统计学习方法和深度学习方法均有明显提高,验证了其合理性和有效性。

  • 关键词: 
  • 人工智能  /  
  • 音乐  /  
  • 信息检索  /  
  • 长短时记忆  /  
  • 循环神经网络  /  
  • 数据处理  /  
  • 特征提取  /  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

米朵儿技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值