实变函数(二)Power Set

本身幂集(Power Set,下称PS)仅仅只是一个非常小的概念,并且我们高中也都接触过,实在是似乎没必要作为一个专题进行讲解。实际上本人在某次实变课中听了老师的讲解后,对幂集有一些更为独特的认识,特此记录。

PS的标准定义

这和高中的定义别无二致,定义集合 A A A的幂集 P ( A ) \mathbb{P}(A) P(A)如下:
P ( A ) = { B ∣ B ⊆ A } \mathbb{P}(A)= \{B|B\subseteq A\} P(A)={BBA}说白了,幂集就是由某个集合的所有子集组成的,其中元素总个数为 2 N ( A ) 2^{N(A)} 2N(A)(此时我们并不在无限集合中进行讨论), N ( A ) N(A) N(A)代表集合 A A A中的元素总数。

集合映射的定义法

我们先给出一个定义:
Y X Y^X YX代表 { f ∣ f : X → Y } \{f|f:X\rightarrow Y\} {ff:XY},即 Y X Y^X YX代表一个集合,这个集合中的所有元素由所有能够将 X X X映射到由 Y Y Y中元素组成的序列 s e q ( Y ) {\rm seq}(Y) seq(Y)中的映射 f f f构成。所谓的 s e q ( Y ) {\rm seq}(Y) seq(Y),实质上就是代表一个不定长的序列 s = { s i ∣ s i ∈ Y } s=\{s_i|s_i\in Y\} s={sisiY},换句话说,就是一个由 Y Y Y中的元素构成的序列。
这个看似和幂集没有关系的定义,实际上,当我们令 Y = { 0 , 1 } Y = \{0,1\} Y={0,1}后,就可以得到一个完全等价于 P ( A ) \mathbb{P}(A) P(A)的集合 { 0 , 1 } A \{0,1\}^A {0,1}A { 0 , 1 } A \{0,1\}^A {0,1}A事实上就是代表所有能够将 A A A中映射为一个 s e q ( { 0 , 1 } ) {\rm seq}(\{0,1\}) seq({0,1})的映射构成的集合。我们如何理解这样的一个集合,不妨给出一个例子:
假设 A = { 0 , 1 , 2 } A=\{0,1,2\} A={0,1,2},则 P ( A ) = { ∅ , { 0 } , { 1 } , { 0 , 1 } , { 1 , 2 } , { 0 , 2 } , { 0 , 1 , 2 } } \mathbb{P}(A)=\{\varnothing,\{0\},\{1\},\{0,1\},\{1,2\},\{0,2\},\{0,1,2\}\} P(A)={,{0},{1},{0,1},{1,2},{0,2},{0,1,2}}。那么接下来我们将给出 2 A 2^{A} 2A(事实上有 2 : = { 0 , 1 } 2:=\{0,1\} 2:={0,1},详细见附录)。

事实上,此时 2 A = { f 1 , f 2 , f 3 , f 4 , f 5 , f 6 , f 7 , f 8 } 2^A=\{f_1,f_2,f_3,f_4,f_5,f_6,f_7,f_8\} 2A={f1,f2,f3,f4,f5,f6,f7,f8},其中
{ f 1 : A → { 0 , 0 , 0 }    [ B 1 = ∅ ] f 2 : A → { 1 , 0 , 0 }    [ B 2 = { 0 } ] f 3 : A → { 0 , 1 , 0 }    [ B 3 = { 1 } ] f 4 : A → { 0 , 0 , 1 }    [ B 4 = { 2 } ] f 5 : A → { 1 , 1 , 0 }    [ B 5 = { 0 , 1 } ] f 6 : A → { 0 , 1 , 1 }    [ B 6 = { 1 , 2 } ] f 7 : A → { 1 , 0 , 1 }    [ B 7 = { 0 , 2 } ] f 8 : A → { 1 , 1 , 1 }    [ B 8 = { 0 , 1 , 2 } ] \left\{\begin{align} f_1:A\rightarrow \{0,0,0\}\;[B_1=&\varnothing]\\ f_2:A\rightarrow \{1,0,0\}\;[B_2=&\{0\}]\\ f_3:A\rightarrow \{0,1,0\}\;[B_3=&\{1\}]\\ f_4:A\rightarrow \{0,0,1\}\;[B_4=&\{2\}]\\ f_5:A\rightarrow \{1,1,0\}\;[B_5=&\{0,1\}]\\ f_6:A\rightarrow \{0,1,1\}\;[B_6=&\{1,2\}]\\ f_7:A\rightarrow \{1,0,1\}\;[B_7=&\{0,2\}]\\ f_8:A\rightarrow \{1,1,1\}\;[B_8=&\{0,1,2\}]\\ \end{align} \right. f1:A{0,0,0}[B1=f2:A{1,0,0}[B2=f3:A{0,1,0}[B3=f4:A{0,0,1}[B4=f5:A{1,1,0}[B5=f6:A{0,1,1}[B6=f7:A{1,0,1}[B7=f8:A{1,1,1}[B8=]{0}]{1}]{2}]{0,1}]{1,2}]{0,2}]{0,1,2}]可以看到每个映射 f i f_i fi映射出的 s e q ( A i ) {\rm seq}(A_i) seq(Ai)以及通过哪个真子集 B i B_i Bi映射出的。因此,事实上就有 2 A = = = P ( A ) 2^A===\mathbb{P}(A) 2A===P(A)(对js玩家的基本尊重!#^.^#)。我们可以看到,当我们以一种独特的眼光看待 { 0 , 1 } \{0,1\} {0,1}的时候,即将是否属于这层关系以0/1关系对表达后,我们就可以以集合映射的这种方式表达幂集,因为事实上幂集的定义也隐含着是否属于这层关系作为划分。那么找这种想法,如果我们能够敏锐地捕捉到某种三元关系,就可以自己创造出一个三元集合 Y = { 0 , 1 , 2 } Y=\{0,1,2\} Y={0,1,2},然后仿照上述方式自定义出 3 A 3^A 3A

Cantor定理

有了前面关于幂集的铺垫,事实上理解Cantor定理的证明就是手到擒来。Cantor定理非常简单,就是证明
2 A ‾ ‾ > A ‾ ‾ , A ∼ R \overline{\overline{2^A}} > \overline{\overline{A}},A\sim\mathbb{R} 2A>A,AR此定理直接引出了无最大基数的结论,这也是显然的。我们不妨以 A = [ 0 , 1 ] A=[0,1] A=[0,1]进行论证,使用对等的传递性可以推广到任意US上。在接下来的一章中我们将会详细地讨论证明技巧,在此处我们直接使用伯恩斯坦(Bernstein)定理。首先分析 2 A 2^A 2A的构成,显然其中的每个映射出的 s e q ( { 0 , 1 } ) {\rm seq}(\{0,1\}) seq({0,1})的长度都是 ℵ \aleph 。接下来,根据Bernstein定理,只需要证明(a) ∃ f : A → 2 A , f    i s    i n j e c t i v e    m a p \exists f:A\rightarrow 2^A,f\;is\;{\rm injective\;map} f:A2A,fisinjectivemap,同时有(b) ∃ f : 2 A → A , f    i s    i n j e c t i v e    m a p \exists f:2^A\rightarrow A,f\;is\;{\rm injective\;map} f:2AA,fisinjectivemap。那么先证明命题(a)的正确性。事实上还是非常简单的,只要 t a k e    a ∈ A take\;a\in A takeaA,而后将这个 a a a表达成为一个三进制的数即可,映射关系为 f ( a ) = ∑ i = 1 + ∞ a [ i ] 3 i f(a)=\sum_{i=1}^{+\infty}\frac{a[i]}{3^i} f(a)=i=1+3ia[i],其中 a [ i ] a[i] a[i]代表取 a a a的小数点后第 i i i位数字,当 i → + ∞ i\rightarrow+\infty i+的时候,通常有 a [ i ] = 0 a[i]=0 a[i]=0。经过上述映射后,事实上就得到了一串仅仅由0或者1组成的数字了。(?这里似乎有些问题,如果 a = 0.2 a=0.2 a=0.2,那么似乎得到的是 { 2 , 2 , 2 , 2 , ⋯   } \{2,2,2,2,\cdots\} {2,2,2,2,})。对于命题(b),事实上就很简单了,因为在 2 A 2^A 2A中是一串由0或1组成的序列,在二进制的背景下就可以轻松地表征任意小数,即使用映射 f ( a ) = ∑ i = 1 + ∞ 2 i − 1 ⋅ a [ i ] f(a)=\sum_{i=1}^{+\infty}2^{i-1}\cdot a[i] f(a)=i=1+2i1a[i],其中 a [ i ] a[i] a[i]代表 a a a的第 i i i位数。

附录

  1. 自然数的集合表示
    如果定义 1 : { 0 } 1:\{0\} 1:{0},那么就可以定义迭代式 n : n = ( n − 1 ) + { n − 1 } n:n=(n-1)+\{n-1\} n:n=(n1)+{n1},这样就可以给出接下来几个自然数的定义:
    2 : { 0 , 1 } 3 : { 0 , 1 , 2 } 4 : { 0 , 1 , 2 , 3 } \begin{align} &2:\{0,1\}\\ &3:\{0,1,2\}\\ &4:\{0,1,2,3\}\\ \end{align} 2:{0,1}3:{0,1,2}4:{0,1,2,3}

  2. 进制转换
    对于一个实数 a = ⋯ x n ⋯ x 0 . x − 1 ⋯ x − n ⋯ a=\cdots x_n\cdots x_0.x_{-1}\cdots x_{-n}\cdots a=xnx0.x1xn,它的 k k k进制表达式为
    b k ( a ) = ( ⋯   , x n , ⋯   , x − n , ⋯   ) ⋅ ( ⋯   , k n , ⋯   , k − n , ⋯   ) T = ∑ i = − ∞ + ∞ k i x i b_k(a)=(\cdots,x_n,\cdots,x_{-n},\cdots)\cdot(\cdots,k^{n},\cdots,k^{-n},\cdots)^T=\sum_{i=-\infty}^{+\infty}k^{i}x_i bk(a)=(,xn,,xn,)(,kn,,kn,)T=i=+kixi同样地,如果知道了 b k ( a ) b_k(a) bk(a)的值 v = b k ( a ) v=b_k(a) v=bk(a),也可以做一个反映射求解出 a a a。即
    a = b k − 1 ( v ) = ∑ i = − ∞ + ∞ k − i x i a=b_k^{-1}(v)=\sum_{i=-\infty}^{+\infty}k^{-i}x_i a=bk1(v)=i=+kixi

  • 17
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
arcpy中的idw()函数是一种插值方法,用于根据已有点数据的属性值,通过反距离加权(Inverse Distance Weighting)的方式对空间位置的属性值进行估计。该函数的用法如下: 1. 准备数据:需要有包含待插值的点要素类或点数据集,以及带有属性值的目标栅格数据集。 2. 创建插值对象:调用arcpy中的Idw()函数,创建一个插值对象。例如:interp = arcpy.sa.Idw()。 3. 设置插值参数:可以通过Idw()函数setCellSize()、setPower()、setSearchRadius()等方法设置插值的网格大小、权重参数和搜索半径等。可以根据实际需求逐一设置参数。 4. 进行插值计算:使用插值对象的原始点输入和目标栅格数据为参数,调用插值对象的execute()方法进行插值计算。例如:output_raster = interp.execute(input_points, target_raster)。 5. 输出结果:插值计算完成后,可以将插值结果保存为栅格数据集,或在GIS软件中进一步分析和使用。 需要注意的是,插值方法对输入数据的质量和密度有一定要求。较为稀疏或数据不均匀的点集可能导致插值结果不准确或产生伪影。此外,插值结果的准确性也与选择的参数设置有关,需要根据具体情况进行调整。 总之,arcpy中的idw()函数是一种基于已有点数据进行空间插值的工具,可以通过设置参数进行灵活的调整,用于生成估计的栅格数据集。通过该函数的使用,可以实现对待插值点数据的空间分布的估计和推断,为后续的空间分析和决策提供支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值