可解释性机器学习

目录

可解释性机器学习的定义

可解释性机器学习的优点、挑战及应用场景

用于预测患者肺癌的具体代码实现

本案例中使用的shap解释器 

 机器学习判断法律案件胜诉可能性

lime解释器


可解释性机器学习的定义

可解释性机器学习是通过解释模型的决策过程和预测结果,使人们能够理解模型如何进行预测并做出信任和合理决策的过程,它强调对模型的透明度和理解能力,有助于提高模型的可靠性和实际应用性,可解释性机器学习的价值在于增加了对算法决策的可控性和解释性,能够帮助我们发现模型中的潜在问题,并避免不必要的错误和误解。

可解释性机器学习的优点、挑战及应用场景

优点:

  • 帮助用户理解模型预测的依据,增加用户对模型的信任度。

  • 有利于发现模型可能存在的偏差或错误,更容易进行模型诊断和修复。

  • 可以在当前解释技术不够成熟时,提高模型透明度和可控性。

  • 有利于满足法规和法律对算法公平性、无偏性的要求。

主要挑战:

  • 解释性和预测性能难以兼得,解释性往往会影响模型效果。

  • 深层模型内部机制复杂,目前解释技术解释能力有限。

  • 解释结果本身也需要解释,高层次的解释难度更大。

主要应用场景:

  • 医疗诊断、法律、公共安全等人命相关领域。

  • 需要满足法律法规要求的领域,如信用评分。

  • 对社会影响力大的机器学习系统。

  • 当用户需要理解模型决策过程时。

用于预测患者肺癌的具体代码实现

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

#加载数据
data = pd.read_csv('lung_cancer_data.csv') 

#分割特征和目标变量
X = data[['age','smoking_years','COPD']]
y = data['lung_cancer']

#拆分训练集测试集
X_train, X_test, y_train, y_test = train_test_split(X, y) 

#训练随机森林分类器 
clf = RandomForestClassifier().fit(X_train, y_train)

#预测
y_pred = clf.predict(X_test)

#评估精度
from sklearn.metrics import accuracy_score
print('Accuracy: ', accuracy_score(y_test, y_pred))

#使用SHAP解释器解释模型预测
import shap
shap_values = shap.TreeExplainer(clf).shap_values(X)
shap.summary_plot(shap_values, X)

该代码加载肺癌数据集,使用随机森林分类器训练模型,并预测测试集标签。最后使用SHAP解释器解释模型预测的依据,如哪些特征对预测影响较大,此外也可以添加其他指标评估模型质量。

本案例中使用的shap解释器 

  1. SHAP基于 shapely 值理论,它源于博弈论,用于衡量个体特征对模型预测结果的贡献。

  2. 对于每一个样本,SHAP通过计算该样本所有可能子集中,特征存在与不存在时模型输出的差异。

  3. 这些边际贡献根据公式计算出代表该特征对该实例预测结果贡献的shapley值。

  4. 由于shapley值具有加性性质,可以计算出每一个特征在该实例中的绝对影响程度。

  5. SHAP解释器会对每一次预测计算所有特征的shapley值。

  6. 这些shapley值既可以用来解释单个预测,也可以汇总 stationed 的 shapley值对所有样本进行可视化。

  7. 例如平均按特征 shapley值排序可以看出影响程度最大的特征。

  8. SHAP值也可以利用依赖图等方式展示特征间相互影响。

这里举一个简单的例子来说明SHAP解释器工作原理:

假设我们有一个分类模型,输入有3个特征A,B,C,输出一个标签0或1。

现在有一个样本,其特征值为:

A = 1
B = 0
C = 1

模型给出的预测标签是1。

SHAP解释器会计算:

  1. 当只有A时,模型预测值。

  2. 当只有B时,模型预测值。

  3. 当只有C时,模型预测值。

  4. 当A,B共存时,模型预测值。

  5. 当A,C共存时,模型预测值。

  6. 当B,C共存时,模型预测值。

  7. 当A,B,C全存在时,模型预测值。

它通过对比不同子集中模型输出的差异,来计算每个特征的边际效应。

然后根据shapley值公式,得到每个特征A,B,C对预测结果的独立贡献,也就是它们的SHAP值。

通过这样的分析,我们就可以看到每个特征对预测结果的影响程度,这就是SHAP解释器工作的基本套路。

SHAP解释器计算每个特征的边际效应是基于下面这个思路:

对于样本X上的模型预测f(X),它有m个特征。

对于每个特征xi, SHAP会考虑该特征在所有可能的子集S中的取值:

  • 当xi在S中时,模型输出为f(X|S)

  • 当xi不在S中时,模型输出为f(X|-xi)

那么这个特征xi在子集S中的边际效应 défined 为:

边际效应 = f(X|S) - f(X|-xi)

也就是说,这个特征加入或去除子集S时,模型输出的变化。

SHAP会计算样本X上每个可能的子集S,然后对每个特征xi统计他在所有子集S中的边际效应。

最后根据shapley值的定义,通过加权平均计算出特征xi对整体模型输出f(X)的贡献大小。

这个贡献量就是我们常说的这个特征的SHAP值,就代表了它对预测结果的独立影响程度。

所以通过不断采样不同子集,SHAP可以详细解剖每个特征的边际影响,从而给出它们对结果的解释。

 机器学习判断法律案件胜诉可能性

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

#加载法律案件数据集
data = pd.read_csv('legal_cases.csv') 

#分割特征和目标变量    
X = data[['case_facts','law_articles']]
y = data['win_or_lose']

#拆分训练集测试集
X_train, X_test, y_train, y_test = train_test_split(X, y)

#训练随机森林分类器
clf = RandomForestClassifier().fit(X_train, y_train)

#预测测试集
y_pred = clf.predict(X_test)

#模型评估
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

#使用LIME解释单个案例预测原因    
from lime import lime_text
exp = lime_text.LimeTextExplainer(class_names=['lose','win'])
exp.explain_instance(X_test.values[0], clf.predict_proba)

该代码加载法律案件数据,训练RF分类模型预测胜诉可能性,并使用LIME解释单例预测依据,可以辅助法律工作。

lime解释器

LIME(Local Interpretable Model-agnostic Explanations)是一个非常有用的可解释机器学习工具。

LIME的工作原理是:

  • 对预测的每个样本,LIME都会训练一个"本地解释模型"来近似实际模型在这个样本附近的行为。

  • 本地解释模型一般使用线性模型或者决策树这类易解释模型。

  • LIME通过对样本附近数据点进行扰动,并询问实际模型得到这些点的预测,来训练本地模型。

  • 本地模型可以解释实际模型对这个样本的预测是如何受不同特征值影响的。

在上述代码中:

  • exp = lime_text.LimeTextExplainer建立文本数据的LIME解释器对象

  • explain_instance函数对单个测试样本进行解释

  • 它会返回影响预测的关键特征词及其相对贡献值

所以LIME可以解释模型预测一个单独样本的原因,指出影响程度最大的特征,这对法律工作很有意义。

它的优点是模型无关,仍适用于黑箱模型,这就是LIME受到欢迎的原因。

LIME训练本地解释模型的过程包括以下步骤:

  1. LIME周围采样许多实例,如更改、删除单个词等。这构成了一个新数据集。

  2. 对新数据集每个实例,询问原始模型给出的预测结果。这为新数据集加入预测标签。

  3. LIME对新数据集中的每个实例计算其相对于原始实例的距离作为新特征。

  4. LIME利用新数据集训练一个线性回归模型,取各个特征项的系数作为“影响程度”。

  5. 被训练的线性模型直接优化的是对原始模型在周围实例表现的模拟goodness。

  6. 其中的特征系数量化了不同特征值改变对原始模型输出影响的程度。

  7. 系数值越大,表示该特征对原始模型输出贡献越大,可以视为关键影响特征。

通过这一训练过程,LIME得到的线性模型仅在原始样本附近有效,但能反映原始模型在这里的线性表现,从而提供本地解释。

假设我们有一个文本分类模型,用于判断新闻文章是否为政治类。

给定一个测试样本:

文本内容: "政府宣布将提高税率。"
模型预测: 政治类

LIME会做如下工作:

  1. 创建样本的变异实例,如删改单个单词:

    • "政府宣布税率。"
    • "将提高税率。"
    • "政府将提高。"
  2. 询问原模型这些实例的预测结果。

  3. 求每个实例与原样本的距离,做为新特征。

  4. 用这些新数据训练线性模型fitting原模型表现。

  5. 得到的线性模型公式为:
    y = 1.0*"政府" + 0.8*"税率" + 0.1*"将提高"

  6. 所以关键词为"政府"和"税率",它们最大影响预测结果。

通过这个例子可以清楚看到LIME是如何在本地近似原始模型,并解释单个预测结果的。它利用了简单且易解释的线性模型。

可以使用一个更简单的文本分类例子来说明LIME的工作原理:

假设我们有一个模型来判断是否是正面评论,输入是一个短评文本:

评论文本: "电影很好看,主演演技饱满"
模型预测: 正面评论

LIME会做以下工作:

  1. 根据输入文本生成多种扰动样本,如删除个别单词

  2. 检查样本:"电影很演技饱满"
    模型预测:负面评论

  3. 样本:"主演演技饱满"
    模型预测:中性评论

  4. 将样本和预测作为新数据集训练线性模型

  5. 得到线性模型:
    正面=1.0*"电影很好看"+0.6*"主演演技饱满"

  6. 所以"电影很好看"对正面判断贡献最大

通过对原始样本进行简单删除操作,LIME找到主要影响项"电影很好看",表明它是模型判断的关键依据。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值