关于洛必达的使用,n阶可导只能洛到n-1阶

记录本人在考研过程中遇到洛必达的问题,以下是我自己的理解,若有不对请大佬指正

洛必达的三个要求:

1、0比0型或者\infty\infty未定式

2、函数在趋向下可导,或者导函数在趋向下存在

3、洛完以后函数的值得 存在或者\infty,不能是震荡的

n阶可导代表着 :

(1)n阶导数存在

(2) n-1阶导数可导并且连续,并不能推出n阶导数连续

那为什么不能洛到n阶呢  只能导到n-1呢  其实这里面牵扯到了做题能否做出来,我们使用洛必达也是为了做题,这里面我分成了两种情况:

第一种是抽象函数,题目没有给出,x在哪一点可导,比如:g(x)二阶可导,没说x在哪一点可以导,举个例子:g(x)有二阶导数,且g(0)=1,g'(0)=-1

其实可以导到第二步,但是你导完以后,并没有办法做题,有人说我直接把0一代,直接就出来了,那纯属胡扯,你的二阶导存在,并不能得出二阶导连续,你代0就相当于连续了,极限等于函数值了,那能不能将g''(x)用导数的广义化定义来变成一阶导呢?

即:

很抱歉,这样转是不对的,导数的广义化是动点减定点,这样转是动点减动点了,有人说动点减动点可以补成动点减定点,但是一补就成了三阶导,题目并没有给出相应的条件,有了三阶导谁会费劲的补,直接就能求了,所以只能落到n-1次,然后用题目给出的条件进行导数广义化的补项

第二种是在某一个点二阶可导,比如g(x)在x=0处有二阶可导,且g(0)=1,g'(0)=-1

他现在直接在第二步就错了,题目给出的是x=0处二阶可导,但是现在求的是在x\rightarrow0下这一个去心邻域的二阶可导,你只是说一个点二阶可导,证明不出在这个点的去心邻域二阶可导,x\rightarrow0这个玩意可以理解为一个非常非常非常小的范围,比你想象的范围还要小,但绝对不是一个点,不满足洛必达使用要求的第2个条件

函数在趋向下可导,或者导函数在趋向下存在

总的来说,在题目只给出二阶可导的情况下,你只能洛到n-1阶,用函数的定义来做题,因为洛到n阶没办法用函数连续,极限等于函数值来做题,如果是二阶连续可导,那可以尝试洛到二阶来做题,但是不是百分百可以做出来,具体问题具体分析了

能不能洛到n阶,取决于洛完以后的函数连不连续,不连续就洛到n-1用其他方法做

这是我自己理解,有不对的地方请各位指正,另外给大家贴一个n阶可导只能洛到n-1的证明链接:函数有n阶导,为什么只能洛到n-1阶? - 哔哩哔哩 (bilibili.com)icon-default.png?t=O83Ahttps://www.bilibili.com/read/cv25641292/#:~:text=%E6%A0%B9%E6%8D%AE%E7%8E%B0%E6%9C%89%E6%9D%A1%E4%BB%B6

### 使用Python实现洛必达法则的演示 为了展示洛必达法则的应用,可以利用SymPy库来进行极限运算以及数计算。通过构建两个函数并应用洛必达法则来解决不定型问题。 考虑两个连续可函数$f(x)$和$g(x)$,当$x \to a$时都趋向于0或无穷大,则有: $$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a}\frac{f'(x)}{g'(x)},$$ 如果右侧存在的话[^1]。 下面是具体的Python代码示例,该例子展示了如何使用洛必达法则求解$\lim _{x \rightarrow 0}{\sin (x)}/{x}$的形式未定式的极限值: ```python import sympy as sp # 定义符号变量 x = sp.symbols('x') # 定义分子分母函数 numerator_function = sp.sin(x) denominator_function = x # 初始表达式 original_expression = numerator_function / denominator_function print("原始表达式:", original_expression) # 对分子分母分别求 df_numerator = sp.diff(numerator_function, x) df_denominator = sp.diff(denominator_function, x) # 构建新的表达式即数比 new_expression = df_numerator / df_denominator print("\n应用洛必达法则后的表达式:") sp.pprint(new_expression) # 计算原表达式与新表达式的极限值作为对比 limit_original = sp.limit(original_expression, x, 0) limit_new = sp.limit(new_expression, x, 0) print(f"\n原始表达式的极限值为: {limit_original}") print(f"应用洛必达法则后的新表达式的极限值为: {limit_new}") ``` 上述程序首先定义了一个形式上的未定式${\sin (x)}/{x}$,接着对其进行了两不同的操作:一是对这个比例直接取极限;另一则是先对该比例运用了洛必达法则再取极限。最终两者的结果应该相同,以此验证了洛必达法则的有效性[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值