记录本人在考研过程中遇到洛必达的问题,以下是我自己的理解,若有不对请大佬指正
洛必达的三个要求:
1、0比0型或者比未定式
2、函数在趋向下可导,或者导函数在趋向下存在
3、洛完以后函数的值得 存在或者,不能是震荡的
n阶可导代表着 :
(1)n阶导数存在
(2) n-1阶导数可导并且连续,并不能推出n阶导数连续
那为什么不能洛到n阶呢 只能导到n-1呢 其实这里面牵扯到了做题能否做出来,我们使用洛必达也是为了做题,这里面我分成了两种情况:
第一种是抽象函数,题目没有给出,x在哪一点可导,比如:g(x)二阶可导,没说x在哪一点可以导,举个例子:g(x)有二阶导数,且g(0)=1,g'(0)=-1
其实可以导到第二步,但是你导完以后,并没有办法做题,有人说我直接把0一代,直接就出来了,那纯属胡扯,你的二阶导存在,并不能得出二阶导连续,你代0就相当于连续了,极限等于函数值了,那能不能将g''(x)用导数的广义化定义来变成一阶导呢?
即:
很抱歉,这样转是不对的,导数的广义化是动点减定点,这样转是动点减动点了,有人说动点减动点可以补成动点减定点,但是一补就成了三阶导,题目并没有给出相应的条件,有了三阶导谁会费劲的补,直接就能求了,所以只能落到n-1次,然后用题目给出的条件进行导数广义化的补项
第二种是在某一个点二阶可导,比如g(x)在x=0处有二阶可导,且g(0)=1,g'(0)=-1
他现在直接在第二步就错了,题目给出的是x=0处二阶可导,但是现在求的是在x0下这一个去心邻域的二阶可导,你只是说一个点二阶可导,证明不出在这个点的去心邻域二阶可导,x0这个玩意可以理解为一个非常非常非常小的范围,比你想象的范围还要小,但绝对不是一个点,不满足洛必达使用要求的第2个条件
函数在趋向下可导,或者导函数在趋向下存在
总的来说,在题目只给出二阶可导的情况下,你只能洛到n-1阶,用函数的定义来做题,因为洛到n阶没办法用函数连续,极限等于函数值来做题,如果是二阶连续可导,那可以尝试洛到二阶来做题,但是不是百分百可以做出来,具体问题具体分析了
能不能洛到n阶,取决于洛完以后的函数连不连续,不连续就洛到n-1用其他方法做
这是我自己理解,有不对的地方请各位指正,另外给大家贴一个n阶可导只能洛到n-1的证明链接:函数有n阶导,为什么只能洛到n-1阶? - 哔哩哔哩 (bilibili.com)https://www.bilibili.com/read/cv25641292/#:~:text=%E6%A0%B9%E6%8D%AE%E7%8E%B0%E6%9C%89%E6%9D%A1%E4%BB%B6