刚刚做到一道题,其中一个步骤让我深思了许久:
通过等价无穷小的公式 ~ x,可以将分母先变换成
。
但上面的为什么消失了?
它的等价无穷小等于1吗?似乎只有这种可能。
于是我开始验算:是不是当e的次数为负数时,这个指数函数的复合函数的等价无穷小都为1。
在这个验算过程中,我突然意识到,不需要e的次数为负数这个条件,因为我用到了~x+1这个等价无穷小公式,而当x→0时,若直接代入,就能得出
=1。
所以...想要让这个e的复合函数的等价无穷小为1,似乎只需要满足e的次数上的函数趋于0即可,而恰好,想用等价无穷小的前提也是e的次数上的函数趋于0~
哇!那如果这个公式可以这么用,我们做题再遇到e的几次方岂不是简单了很多!但还需要求证。而在今天做这道题之前,我从来都没有意识到这一点,于是蘑·虚心求教·菇同学立刻去询问了老师:
老师的回答是:
可以的!只要使用时注意等价无穷小的使用条件即可,运算时可以当成1来看,这样对我们的运算都可以简便许多了,否则还需要带着指数函数的复合函数进行洛必达求导等步骤。
这是今天的一个小发现(对于我来说),如果有错误的地方恳请指出~