理解拉格朗日乘子法

文章详细介绍了在学习支持向量机(SVM)时涉及的拉格朗日乘子法,首先阐述了偏导数的概念,它是描述独立变量对函数值影响的工具。接着讲解了如何通过偏导数处理隐含函数的求导问题,并讨论了极值点的判定,包括驻点和不可导点。最后,文章引入条件极值的概念,特别是在函数满足特定条件如约束g(x,y)=0时,寻找函数f(x,y)的极值问题,这在SVM的优化过程中至关重要。
摘要由CSDN通过智能技术生成

在学习svm(支持向量机)的时候有遇到这个概念,所有在这里对拉格朗日乘子法来做一下解释。

预备知识

偏导

对于一个函数 z = f ( x , y ) z = f(x,y) z=f(xy)而言考虑在某个点,x,y对z单独的影响,引入了偏导的概念。偏导描述的是独立变量单独对函数值产生的影响,偏导的几何意义可以是 目标变量(假定为x)和z组成的平面中在x处的切线斜率。

简单可以提一下求导的一些方法:

  • 在括号里面的是认定独立的变量,求导的时候对其中一个求偏导,其他的度量变量看作是常数
  • 很多时候函数没办法处理成显函数,而是一个具有某个关系的隐含数。隐含数求导的公式:对于一隐含数 F ( x , y , z ) = 0 F(x,y,z) = 0 F(x,y,z)=0 δ y δ x \frac{\delta y}{\delta x} δxδy 在目标公式中,认为y是因变量,其实就默认了我们讨论的是 y ( x , z ) y(x,z) y(x,z)这个式子。所以直接算的话: δ F δ x \frac{\delta F}{\delta x} δxδF + δ F δ y \frac{\delta F}{\delta y} δyδF δ y δ x = 0 \frac{\delta y}{\delta x} = 0 δxδy=0 (z和x独立,y和x有关;凑出 δ y δ x \frac{\delta y}{\delta x} δxδy)。因为是函数,左右两边具有统一性,认为是对左右两边同时求导。最后便可以整理成目标 δ y δ x \frac{\delta y}{\delta x} δxδy = - F x F y \frac{F_x}{F_y} FyFx
  • 小发现:曲面方程和隐含数的方程是一样的,数学特性一样但是数学意义不一样。一个是几何概念,一个默认了哪些是自变量哪个是因变量,是代数的概念,集合上而言就是把某个维度专门作为映射的结果,其他维度作为映射的输入了。

极值以及闭式解

驻点和不可导点

驻点是导数为0。极值会在驻点出现。驻点处不一定有极值,需要做一些数学上的判断。以 F = z ( x , y ) F = z(x,y) F=z(x,y)为例, A = F x x A = F_{xx} A=Fxx, B = F x y B = F_{xy} B=Fxy, C = F y y C = F_{yy} C=Fyy
验证 A C − B 2 AC - B^2 ACB2
如果>0 ,A>0,有极小值;A<0,有极大值
= 0,不确定,类似于鞍部
< 0,无极值

条件极值

剖析这个提设,会发现条件极值有两个部分,一个是条件,一个是极值(函数)。
所有条件极值的概念很好理解,就是在条件下的函数的极值。(以下的描述方便于理解,选择可以可视化 的3维内)
函数 z = f ( x , y ) z = f(x,y) z=f(x,y)
条件 g ( x , y ) = 0 g(x,y) =0 g(x,y)=0
请添加图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值