时间序列卷到大模型了!最新10种前沿方法汇总

“大模型+时间序列” 是当前人工智能领域一个极具潜力和创新性的研究方向,它融合了两者的优势,能够在处理多种类型时间序列数据的同时,适应数据的变化和异常情况,显著提高预测的准确性和稳定性。

大模型作为新技术,与时间序列的结合正处在上升期,目前还不卷;且目前大模型发展迅速,相关研究层出不穷,可挖掘创新点的空间大。 想发顶会的同学们抓紧啦!

文章解析:

本文提出了一种名为FedTime的联邦学习框架,专门用于长期时间序列预测。该框架通过在边缘设备上使用本地数据训练大型语言模型(LLM),并采用K-means聚类、通道独立性和补丁技术来优化模型训练,从而在确保数据隐私的同时提高预测精度和通信效率。

创新点:

1.引入了FedTime框架,允许边缘设备在保护数据隐私的情况下进行协作模型训练。

2.设计了两阶段微调策略,利用量化和低秩适应技术以及直接偏好优化来对齐模型与时间序列数据。

3.通过实验展示了FedTime在多个真实世界预测基准上的优越性能,特别是在长期预测方面。

4.采用了参数高效的微调技术,减少了计算和通信开销,提高了训练效率。

A Survey of Time Series Foundation Models: Generalizing Time Series Representation with Large Language Model

文章解析:

本文综述了时间序列基础模型的发展,探讨了从头预训练和适应大规模语言模型两种研究路线,提出了一个3E分析框架(有效性、效率、可解释性),并提供了领域分类法和资源汇总,以促进该领域的进一步发展。

创新点:

1.提出了一个3E分析框架,系统地评估时间序列基础模型的有效性、效率和可解释性。

2.总结了从头预训练和适应大规模语言模型两种研究路线,为统一的时间序列模型发展提供了方向。

3.提供了丰富的资源汇总,包括数据集、开源库和时间序列工具,方便研究人员跟进最新进展。

Large Language Models can Deliver Accurate and Interpretable Time Series Anomaly Detection

文章解析:

本文提出了一种基于大规模语言模型(LLM)的时间序列异常检测(TSAD)方法LLMAD,该方法不仅能够提供准确的检测结果,还能生成可解释的异常报告。通过引入历史数据和领域知识,LLMAD在少量样本的情况下也能有效检测异常,并通过链式思维(AnoCoT)方法增强其解释能力。

创新点:

1.首次直接使用大规模语言模型(LLM)进行时间序列异常检测,无需微调。

2.创新性地应用LLM进行少样本异常检测,显著提升检测效果。

3.采用AnoCoT方法模拟专家逻辑,增强决策过程的解释性和逻辑性。

Reprogramming Foundational Large Language Models (LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning

文章解析:

本文提出了一种结合开源大、小规模语言模型和传统预测方法的混合框架,用于多变量时间序列预测。通过动态提示和分组查询多头注意力机制,有效捕捉时间序列数据中的复杂依赖关系,并通过低秩适应与激活内存减少技术实现企业级定制化。

创新点:

1.引入了动态提示和分组查询多头注意力机制,有效捕捉时间序列数据中的复杂依赖关系。

2.提出了安全的本地化LLM解决方案,保护数据隐私并降低计算成本。

3.结合大、小规模语言模型和传统预测方法,实现更准确和鲁棒的预测框架。

4.采用时间-空间(TTS)方法,全面理解多变量时间序列数据的非线性动态特性。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值