工作流与 Agent 的区别工作流与 Agent 的区别

随着人工智能技术的快速发展,特别是在大语言模型(LLM)的应用领域,工作流(Workflow)和智能代理(Agent)作为两种不同的任务处理方式,逐渐展现出各自的特点和优势。本文将深入探讨工作流与 Agent 的核心区别,并介绍工作流的几种常见形态,帮助读者更好地理解它们在实际开发中的应用价值。

一、工作流与 Agent 的核心区别

工作流(Workflow) 是指通过预先定义的路径,将大语言模型(LLM)与各种工具进行编排,以完成特定的任务。这种方式依赖于开发者设计好的流程结构,强调任务的可控性和可预测性。例如,一个工作流可能包括从数据输入到处理,再到输出的完整步骤,每一步都由开发者提前规划好。

Agent(智能代理) 则是一个更加灵活和自主的系统。它通常由单个大语言模型驱动,能够根据任务需求自主设计流程并选择使用工具。与工作流不同,Agent 不依赖于固定的路径,而是通过自身的推理能力动态调整策略,适应多样化的场景。
简而言之,工作流像是铁路上的列车,沿着既定轨道运行;而 Agent 更像是一位导航员,可以根据目的地和实时路况选择最优路线。这种差异使得工作流适用于结构化、重复性强的任务,而 Agent 更适合需要灵活性和创造性的复杂场景。
图片描述

二、工作流的几种常见形态

在实际开发中,工作流可以通过不同的模式实现任务的高效处理。以下是五种常见的工作流形态,这些模式在工具如 Dify 和 Coze 中均有广泛支持,值得开发者深入了解和实践。

提示链模式(Prompt Chain)
在提示链模式中,任务被分解为多个步骤,每个步骤由一个 LLM 处理,前一个 LLM 的输出作为后一个 LLM 的输入。这种方式类似于流水线作业,适合需要逐步推理或逐步生成结果的任务。例如,在文本生成中,可以先由一个 LLM 提供大纲,再由另一个 LLM 填充细节。

路由模式(Routing)
路由模式通过一个中央路由结构,将任务分配给不同的 LLM 处理。路由器根据任务的性质或输入特征,决定调用哪个 LLM。例如,在多语言翻译系统中,路由器可以根据输入语言选择对应的翻译模型。这种模式提高了任务分配的灵活性。

并行模式(Parallel)
并行模式将任务拆分为多个子任务,由多个 LLM 或工具同时处理。这种方式能够显著提升效率,适用于子任务之间相对独立的情况。例如,在数据分析中,一个 LLM 处理文本数据,另一个 LLM 处理图像数据,二者并行运行。

委派模式(Delegation)
委派模式由一个中央 LLM 负责任务分解,并将子任务委派给不同的 LLM 执行,最后由中央 LLM 整合结果。这种模式类似于项目管理中的团队协作,中央 LLM 扮演“协调者”的角色。典型应用包括多步骤的复杂问题求解。

评估模式(Evaluation)
在评估模式中,一个 LLM 负责生成初步结果,另一个 LLM 对结果进行评估和反馈。这种模式常用于需要质量控制的场景,例如内容生成后需要检查逻辑一致性或语法正确性。
图片描述
思维导图:工作流与 Agent 的区别
工作流与 Agent 的区别
├── 定义
│ ├── 工作流:LLM 和工具通过预先定义路径编排
│ └── Agent:一个 LLM 自主设计流程和使用工具
├── 特点对比
│ ├── 工作流:结构化、可控、预定义
│ └── Agent:灵活、自主、动态调整
└── 工作流形态
├── 提示链模式:任务分解,逐步输出
├── 路由模式:任务分配,动态选择
├── 并行模式:子任务并行,效率提升
├── 委派模式:中央协调,任务整合
└── 评估模式:生成与反馈,质量控制

工作流和 Agent 各有千秋,选择哪种方式取决于具体的应用场景。工作流以其清晰的结构和高效的执行能力,适合标准化任务的批量处理;而 Agent 凭借其自主性和适应性,则在探索性、创新性任务中更具潜力。通过深入学习工作流的多种形态,如提示链、路由、并行、委派和评估模式,开发者可以更好地设计和优化系统,推动人工智能技术在实际场景中的落地。
无论是构建一个稳定的工作流,还是开发一个智能的 Agent,理解二者的区别和特性都是迈向成功的第一步。希望本文能为你的开发之旅提供启发和指导!

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值