或许你曾与手机中的语音助手展开过交谈,又或是借助某个在线工具完成邮件初稿的撰写。这些其实都是人工智能(AI)悄然渗透进我们日常生活的缩影。然而,不妨大胆设想:倘若AI不再局限于被动回应,而是能够主动为你预订机票、梳理会议要点,甚至助力你管理项目……这样的场景是否充满吸引力?这便是我们即将踏入的全新领域——AI智能体的世界。
在本章内容中,我们将深入剖析AI、大语言模型(LLM)以及AI智能体的内在奥秘,清晰阐释它们的本质内涵、实际应用价值,以及为何当下是学习构建AI智能体的黄金时期。无论你是毫无基础的新手,还是略有经验的探索者,无代码/低代码工具都将成为你得心应手的“利器”。此刻,你是否已准备就绪?让我们携手开启这场充满惊喜与挑战的探索之旅!
一、人工智能(AI)简单介绍
在我们深入智能体之前,先来聊聊“人工智能”这个大家既熟悉又有点模糊的概念。
1、 什么是人工智能?
简单来说,人工智能就是让机器(通常是计算机程序)能够像人一样思考、学习和解决问题。目标是创造出能够执行需要人类智能才能完成的任务的系统。这听起来可能很科幻,但AI早已渗透到我们生活的方方面面。
2、AI简史(极简版):从梦想照进现实
AI不是一天建成的。早在几十年前,科学家们就梦想着创造能思考的机器(可以追溯到图灵测试)。早期AI依赖于预设规则(专家系统)。后来,“机器学习”让机器能从数据中学习模式,而近年来“深度学习”(一种更强大的机器学习)的突破,尤其是大语言模型的出现,才真正让AI的能力产生了质的飞跃,让我们能与机器进行流畅对话,并让它们完成更复杂的任务。
3、我们身边的AI应用:它们无处不在
你可能每天都在不知不觉中使用AI:
- 推荐系统: 购物网站(淘宝、京东)推荐你可能喜欢的商品,视频平台(抖音、Bilibili)推送你感兴趣的内容。
- 语音助手: 手机里的Siri、小爱同学,智能音箱等,能听懂你的话并执行指令。
- 导航软件: 高德地图、百度地图能规划最佳路线,实时预测路况。
- 人脸识别: 手机解锁、支付验证。
- 内容创作辅助: 自动生成文章摘要、翻译文本、甚至简单的图片设计。
这些应用展示了AI在不同领域的威力。而我们这本书要聚焦的AI智能体,可以说是AI发展至今,一个更令人兴奋、更具潜力的应用方向。
二 、大语言模型(LLM):智能体的“引擎”
要理解AI智能体,就必须先了解驱动它们的核心“引擎”——大语言模型(Large Language Model, LLM)。
1、LLM如何工作?
你可以把LLM想象成一个超级聪明的“文字接龙”大师或者“语言模式识别”专家。它们是如何炼成的呢?
- 海量数据“喂养”: 开发者们用互联网上能找到的几乎所有文本(网页、书籍、文章、对话等,数据量大到难以想象)来“训练”这些模型。
- 学习语言规则与模式: 在训练过程中,LLM通过复杂的算法学习单词之间的关系、语法结构、句子含义,甚至不同话题的知识和写作风格。它不是真的“理解”世界,而是极其擅长预测:根据前面的文字,下一个最可能出现的单词或句子是什么。
- 生成连贯文本: 正是因为这种强大的预测能力,当你给LLM一段文字(称为“提示词”或“Prompt”)时,它就能“接”下去,生成看起来非常自然、连贯、甚至富有创造力的回答或内容。
简单来说,LLM的核心能力在于理解人类输入的指令和信息,并生成符合要求的高质量文本。这正是AI智能体能够与我们沟通、理解任务的基础。
2、 LLM的能力边界:既是天才,也有“短板”
LLM的能力令人惊叹,但也并非完美。了解它的长处和短处,对我们构建和使用智能体至关重要。
强大之处:
- 自然语言理解与生成: 能像人一样流畅对话、写作、总结、翻译。
- 知识问答: 能回答关于广泛主题的问题(基于其训练数据)。
- 文本创作: 写邮件、写故事、写代码、写营销文案等。
- 逻辑推理(一定程度): 能进行一些简单的逻辑推断和问题分解。
- 代码能力: 许多LLM能理解和生成代码。
局限性(需要注意!):
- “一本正经地胡说八道”(幻觉 Hallucination): LLM有时会编造看似合理但不真实的信息。因为它本质是预测“最可能”的文字,而非“最真实”的。
- 知识截止日期: 它的知识通常停留在训练数据截止的那个时间点,对之后发生的新事件可能一无所知(除非连接了实时网络)。
- 缺乏真实世界感知与行动能力: LLM本身只是“纸上谈兵”,无法直接与现实世界交互(比如帮你订外卖,它只能生成订外卖的文字)。
- 数学和精确逻辑的挑战: 对于复杂的数学计算或严密的逻辑推理,有时会出错。
- 偏见问题: 可能从训练数据中学会并复制人类社会的偏见。
- 无法自主学习更新(通常): 一旦训练完成,模型本身不会自动学习新知识(需要重新训练或特定技术)。
认识到LLM的局限性,恰恰凸显了AI智能体的价值——智能体通过整合外部工具和设计工作流程,来弥补LLM的这些“短板”。
三 、什么是AI智能体(AI Agent)?
终于来到本章的核心——AI智能体!如果说LLM是大脑,那么智能体就是拥有了手脚和行动计划的大脑。
1、定义:能感知、思考、行动的AI程序
AI智能体(AI Agent)是一个能够自主理解目标、制定计划、并利用可用工具(如软件、API、数据库等)与环境交互以完成特定任务的AI系统。
它的核心特征可以概括为:
- 感知(Perceive): 接收来自环境的信息,最常见的是用户的指令(文本输入),但也可能是其他数据。
- 思考/规划(Think/Plan): 利用其核心的LLM大脑理解目标,将复杂任务分解成一系列可执行的步骤,并决定使用哪些工具来完成这些步骤。
- 行动(Act): 执行计划中的步骤,例如调用一个搜索引擎查询信息、运行一段代码进行计算、访问一个数据库获取数据、或者生成一段回复给用户。
- (可能包含)记忆(Memory): 能够记住之前的交互信息(短期记忆)或长期存储学习到的知识(长期记忆,通常通过知识库实现)。
- (可能包含)学习/适应(Learn/Adapt): (更高级的智能体)能根据行动结果和反馈调整后续行为。
2、 智能体 vs. 聊天机器人:关键区别
很多人会把智能体和我们常见的聊天机器人(Chatbot)混淆。它们都基于LLM,都能对话,但有本质区别:
简单说,聊天机器人重在“聊”,而AI智能体重在“做”。智能体是聊天机器人的进化形态,赋予了LLM行动的能力。
3、 智能体架构概览
虽然不同智能体的实现细节各异,但我们可以描绘一个简化的核心架构,帮助你理解其构成:
- 用户接口(Input/Output): 接收用户指令,展示结果或请求反馈。
- 核心引擎(Agent Core): 这是智能体的心脏,通常包含:
- 大语言模型(LLM Brain): 如Qwen、DeepSeek,负责理解、推理、生成。
- 规划器(Planner): 将用户目标分解为可执行的步骤序列。
- 记忆模块(Memory): 存储对话历史(短期)和背景知识(长期,如知识库)。
- 工具箱(Toolbox): 一系列可供调用的“工具”或“能力”,如:
- 网络搜索
- 计算器
- 代码执行器
- 访问特定数据库或API(如天气查询、日历管理、文件读写)
- 调用其他AI模型(如图像生成)
在无代码/低代码平台上,我们不需要从零搭建这个架构,平台已经帮我们封装好了大部分组件,我们要做的是通过配置和简单的逻辑设计,将它们“组装”起来,定义智能体的行为。
4 、智能体的应用场景:从个人助理到自动化工作流
AI智能体的潜力巨大,以下是一些令人兴奋的应用场景,很多都可以通过无代码/低代码方式初步实现:
- 个人超级助理:
- 邮件处理: 自动分类邮件,根据重要性摘要,甚至草拟回复。
- 会议管理: 自动生成会议纪要,提取待办事项并添加到日历。
- 差旅规划: 根据你的偏好和预算,搜索航班酒店,制定行程计划。
- 信息聚合与报告: 监控特定主题的新闻或社交媒体动态,定期生成摘要报告。
- 个性化学习: 根据你的学习目标和进度,查找资料,生成练习题,解答疑问。
- 工作流程自动化:
- 智能客服: 不仅能回答常见问题,还能查询订单状态、处理退款请求(通过调用内部系统API)。
- 市场研究: 自动搜集竞品信息、分析用户评论、生成市场趋势报告。
- 内容创作流水线: 从选题策划、资料搜集、初稿撰写、配图建议到社交媒体发布,实现半自动化。
- 数据处理与分析: 自动从不同来源提取数据,进行清洗、格式转换,并生成初步的可视化图表或分析摘要。
- 招聘辅助: 自动筛选简历,根据岗位要求进行初步匹配,甚至安排面试。
- 创意与娱乐:
- 互动故事生成器: 根据你的选择动态发展剧情。
- 游戏NPC(非玩家角色): 赋予NPC更智能、更自然的对话和行为。
- 设计助手: 根据描述生成多种风格的Logo草图或网站布局建议。
这些例子只是冰山一角。随着技术发展和工具完善,AI智能体的应用边界将不断拓宽。关键在于,它们能处理需要多个步骤、整合不同信息源、并与外部系统交互才能完成的任务。
5 、为何从无代码/低代码开始?
了解了AI智能体的强大,你可能会想:“构建这么复杂的系统,一定需要很强的编程能力吧?” 过去确实如此,但现在,无代码/低代码智能体开发平台正在改变游戏规则,让普通人也能参与到智能体创造中来。
选择无代码/低代码作为起点,有以下核心优势:
- 极低的门槛(Democratization): 无需编写代码或只需少量代码。 这意味着无论你是产品经理、设计师、运营人员、学生,还是任何对AI感兴趣的人,都可以动手实践。AI开发不再是少数程序员的专利。
- 极快的速度(Speed): 通过可视化的界面、拖拽式的操作和预置的模块,你可以快速将想法转化为可运行的智能体原型,大大缩短了开发周期。
- 专注于逻辑(Focus on Logic): 你可以将精力集中在智能体的目标设定、流程设计、提示词优化等核心业务逻辑上,而不是纠结于复杂的技术实现细节。
- 直观易懂(Visual Interface): 大多数平台提供图形化界面来构建工作流,让复杂的逻辑关系一目了然,易于理解和修改。
- 平缓的学习曲线(Learning Curve): 相较于学习Python编程、API对接、AI框架等,无代码/低代码平台的学习曲线要平缓得多,让你能更快获得成就感。
- 理想的起点(Ideal Starting Point): 即便你未来希望深入学习代码开发,从无代码/低代码入手也能帮你建立对智能体架构、工作原理和核心概念的扎实理解,为后续学习打下良好基础。
本书正是基于这一理念,将重点使用主流的无代码/低代码平台,结合强大的Qwen和DeepSeek模型,带你一步步构建出实用的AI智能体。
总结
在本章中,我们一起探索了人工智能(AI)的基本概念,了解了驱动现代AI应用的核心引擎——大语言模型(LLM)及其能力与局限。最重要的是,我们揭开了AI智能体(AI Agent)的面纱,理解了它是一个能感知、思考、规划并利用工具采取行动以完成任务的系统,是超越简单聊天机器人的存在。我们看到了智能体在个人助理、工作自动化等方面的广阔应用前景,并认识到无代码/低代码平台为我们这些非专业开发者打开了创造智能体的大门。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!