一、题目
二、题目分析
这道题考察的是根据直线和直线之间的关系求解直线方程。
我们首先需要知道,直线和直线有哪几种关系。然后我们要知道这几种关系怎么转化成数学表达式,这样我们才能求解。
1、直线之间的关系
垂直,平行,相交,异面、(重合)
一般不会考虑重合,但是本强迫症还是加上,给它一个括号算了。
2、关系的数学表达式
(1)垂直
这个很简单啦,就是方向向量的点积为零。
(2)平行
这个我们上次也说过了,就是方向向量成比例。
这里的(m1,n1,p1)(m2,n2,p2)就是方向向量,则。
但是!!!重合是平行的一个特例!我们需要考虑平行但是不重合的情况。
所以我们还需要加上一个条件。
我们在两条直线上各取一个点,分别为M1,M2,我们要求不平行于s1或者s2。这样我们就可以保证两直线不重合啦。
(3)相交
相交,我们可以想象一下,这两条直线在空间中一定是共面的!所以我们可以联想到上一道题目的混合积——共面的充要条件!!!
默念一百遍——相交,共面,相交,共面……
然后我们需要三个向量才能组成混合积,所以我们除了原本的两个方向向量之外,还要得到一个向量,就是我们上述的啦。
[,
,
]=0!
//插播一则小提醒,哔哔哔——请注意:
点积的结果和混合积的结果都是标量!只有叉乘的结果才是矢量!(因为混合积就是叉乘之后再点积,所以最后的结果形式和点积一致。)
//
(4)异面
异面,字面意思,就是不能构成一个平面,也就是相交的反面啦,混合积不等于零。
三、解法
好啦,我们取相交直线上的一个点(0,0,0),相交直线法向量(2,1,-1).这个是从我们上次说的点向式方程里得出来的。
所以(1-0,2-0,1-0)和(2,1,-1)以及我们设出的要求的直线方向向量(m,n,p)的混合积为0.
得到m-n+p=0.
现在我们有了一个方向向量向量的约束条件啦,求出方向向量只需要两个约束条件,所以我们加上垂直的信息。(m,n,p)(3,2,1)=0
得到:3m+2n+p=0
联立约束条件:得到m=-3/5p,n=2/5p.
所以该支线方向向量为(-3,2,1)
//插播:方向向量是可以随意改变大小的,只要方向不变,即x,y,z的比例关系不变。所以我们可以任意缩放,即将x,y,z同时乘除一个数。
//
最后我们带入点向式方程,得到结果:
四、举一反三
(1)eg1
(2)eg2
这道题有四条交线,如果每条分别求混合积,很复杂。我们可以尝试换一种方法,比如设交点,而不是设直线的方向向量。
关于设置交点的方法,我们还可以延拓到eg1,因为有两个及以上的相交直线,就可以考虑此方法。以eg1为例,设交点分别为A,B。
噢,对了,这里我们补充一个直线的表达式,两点式。但是两点式本质上和点向式是一样的。因为分母的位置求的就是方向向量。
这个eg2我们也可以解出来,有两个解,分别是
五、总结
我们有两种方法求相交直线,一种是用混合积,另一种是设交点(已知两条及以上交线)。