Transformer简单概述


Transformer 是一种新型的神经网络结构,由 Vaswani et al. 在 2017 年提出,旨在解决序列到序列任务中的长距离依赖问题。其核心创新在于自注意力机制(Self-Attention Mechanism)和完全基于注意力的架构,取代了传统的循环神经网络(RNN)和卷积神经网络(CNN)。以下是对 Transformer 的详细讲解:

原理

Transformer 的关键思想是通过注意力机制捕捉输入序列中各个元素之间的关系,而不是依赖于序列的顺序。注意力机制允许模型在处理每个元素时,直接关注序列中所有其他元素,从而能够更好地理解长距离依赖关系。

自注意力机制(Self-Attention Mechanism)

自注意力机制的核心是计算输入序列中每个元素与所有其他元素的相似度,然后根据这些相似度加权求和。具体来说,自注意力机制包括以下几个步骤:

  1. 计算 Query, Key, Value 矩阵:

    • 对输入序列的每个元素进行线性变换,得到 Query 矩阵 (Q)、Key 矩阵 (K) 和 Value 矩阵 (V)。
  2. 计算注意力权重:

    • 计算 Query 和 Key 的点积,得到注意力得分矩阵。
    • 对得分进行缩放处理,除以 (\sqrt{d_k}),其中 (d_k) 是 Key 向量的维度。
    • 对缩放后的得分矩阵进行 softmax 操作,得到注意力权重矩阵。
  3. 加权求和:

    • 用注意力权重矩阵对 Value 矩阵进行加权求和,得到输出。

公式如下:
[ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right) V ]

多头注意力机制(Multi-Head Attention)

多头注意力机制通过并行地执行多次自注意力计算,然后将结果连接起来,再进行一次线性变换。这样做的好处是,模型可以从不同的子空间中捕捉到更多的信息。

公式如下:
[ \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \ldots, \text{head}_h)W^O ]
其中,每个头的计算为:
[ \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) ]

结构

Transformer 的结构分为编码器(Encoder)和解码器(Decoder)两部分,每部分都由多个相同的层堆叠而成。

编码器(Encoder)

每个编码器层包括以下组件:

  1. 多头自注意力层(Multi-Head Self-Attention Layer):

    • 处理输入序列中的每个元素,关注序列中的所有其他元素。
  2. 前馈神经网络(Feed-Forward Neural Network):

    • 对每个元素进行独立的非线性变换。
  3. 残差连接和层归一化(Residual Connection and Layer Normalization):

    • 在每个子层之后添加残差连接,然后进行层归一化。

解码器(Decoder)

每个解码器层包括以下组件:

  1. 掩码多头自注意力层(Masked Multi-Head Self-Attention Layer):

    • 只允许关注当前时间步之前的元素,防止信息泄漏。
  2. 多头注意力层(Multi-Head Attention Layer):

    • 关注编码器的输出,捕捉输入序列和输出序列之间的关系。
  3. 前馈神经网络(Feed-Forward Neural Network):

    • 对每个元素进行独立的非线性变换。
  4. 残差连接和层归一化(Residual Connection and Layer Normalization):

    • 在每个子层之后添加残差连接,然后进行层归一化。

应用

Transformer 在各种自然语言处理(NLP)任务中取得了显著的成功,包括但不限于:

  1. 机器翻译(Machine Translation):

    • Transformer 最初是为机器翻译任务设计的,在该领域表现优异。
  2. 文本生成(Text Generation):

    • 用于生成连贯且上下文相关的文本,如 GPT-3。
  3. 文本分类(Text Classification):

    • 用于情感分析、主题分类等任务。
  4. 问答系统(Question Answering):

    • 用于从大量文本中提取答案,如 BERT。
  5. 摘要生成(Summarization):

    • 自动生成文本摘要,如 T5。

后续发展

Transformer 的成功催生了许多改进和变体,包括但不限于:

  1. BERT(Bidirectional Encoder Representations from Transformers):

    • 使用双向编码器进行预训练,在多个 NLP 任务上实现了最先进的性能。
  2. GPT(Generative Pre-trained Transformer):

    • 以生成为目标,适用于各种生成任务。
  3. T5(Text-To-Text Transfer Transformer):

    • 将所有 NLP 任务转换为文本到文本的格式,以实现统一处理。
  4. Transformer-XL:

    • 通过引入相对位置编码和记忆机制,处理更长的序列。
  5. BART(Bidirectional and Auto-Regressive Transformers):

    • 结合了 BERT 和 GPT 的优点,用于生成任务。

总结

Transformer 通过其独特的自注意力机制和完全基于注意力的架构,在自然语言处理领域取得了突破性的进展。其结构简单且并行计算效率高,成为现代 NLP 模型的基石。随着不断的发展和改进,Transformer 及其变体将在更多领域展现其强大的能力。

  • 15
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值