目录
本文章以瓶盖检测为例,教大家使用yolov5训练自己的数据集模型,并使用该模型进行目标检测.
在进行本文学习时应该准备好以下内容:
- 完成anaconda的安装 链接: 超详细版Anaconda的安装及使用conda创建、运行虚拟环境以及使用镜像源
- 完成数据集的标注和划分 链接: yolo模型训练所需的数据集的划分教程
- 可以成功运行yolov5的目标检测(本文也会教) 链接: 使用YOLOv5模型进行目标检测
- 安装CUDA与CUDNN(没有独显的同学可以跳过) 链接: CUDA,CUDNN的安装教程,让你可以使用Pytorch GPU显卡来跑程序
如果已经可以成功运行上面第三步目标检测,则可以跳过第一步,从2.1大步开始
1.虚拟环境的配置
1.1虚拟环境的创建
在win+R中打开cmd
输入以下代码创建一个名为yolov5s,python3.8版本的虚拟环境
名称和版本可以更改,但版本不要超过3.9,否则很多库都不兼容
conda create -n yolov5s python=3.8
等待之后出现以下输出则表示以及创建好,如果没创建好,可能是anaconda没用安装配置好,可以看完之前的文章 链接: 超详细版Anaconda的安装及使用conda创建、运行虚拟环境以及使用镜像源