超详细使用YOLOv5网络来训练自己的数据集目标检测模型并实现目标检测


本文章以瓶盖检测为例,教大家使用yolov5训练自己的数据集模型,并使用该模型进行目标检测.

在进行本文学习时应该准备好以下内容:

  1. 完成anaconda的安装 链接: 超详细版Anaconda的安装及使用conda创建、运行虚拟环境以及使用镜像源
  2. 完成数据集的标注和划分 链接: yolo模型训练所需的数据集的划分教程
  3. 可以成功运行yolov5的目标检测(本文也会教) 链接: 使用YOLOv5模型进行目标检测
  4. 安装CUDA与CUDNN(没有独显的同学可以跳过) 链接: CUDA,CUDNN的安装教程,让你可以使用Pytorch GPU显卡来跑程序

如果已经可以成功运行上面第三步目标检测,则可以跳过第一步,从2.1大步开始

1.虚拟环境的配置

1.1虚拟环境的创建

在win+R中打开cmd
输入以下代码创建一个名为yolov5s,python3.8版本的虚拟环境
名称和版本可以更改,但版本不要超过3.9,否则很多库都不兼容

conda create -n yolov5s python=3.8

在这里插入图片描述
等待之后出现以下输出则表示以及创建好,如果没创建好,可能是anaconda没用安装配置好,可以看完之前的文章 链接: 超详细版Anaconda的安装及使用conda创建、运行虚拟环境以及使用镜像源

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值