深度学习torch测试文件,以及conda常用命令

 conda常用命令:

//创建的环境名为VGG python版本为3.8
conda create -n VGG python=3.8

//pytorch torchvision  torchaudio cudatoolkit的安装
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.6 -c pytorch -c conda-forge


//卸载torch torchaudio torchvision命令
pip uninstall torch torchaudio torchvision
pip uninstall torch-geometric torch-scatter torch-sparse torch-cluster torch-spline-conv

//验证torch是否可用,CUDA是否可用
import torch
torch.cuda.is_available()

测试代码 

import torch
print("torch_version:",torch.__version__) 
print("cuda_version:",torch.version.cuda)
print("cudnn_version:",torch.backends.cudnn.version())
print("----------------------------------")
flag = torch.cuda.is_available()  //检验cuda是否可用,true为可用
print(flag)
# 查看显卡个数
print("device_count:",torch.cuda.device_count())
ngpu= 1
# Decide which device we want to run on
device = torch.device("cuda:0" if (torch.cuda.is_available() and ngpu > 0) else "cpu")
print(device)
print("device_name:",torch.cuda.get_device_name(0))
print(torch.rand(3,3).cuda())

正确输出结果:

可以看到输出信息

torch版本1.12.1

cuda:11.6

cudnn:8302

                                

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lambertzzz1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值