气球检测系统源码分享

气球检测检测系统源码分享

[一条龙教学YOLOV8标注好的数据集一键训练_70+全套改进创新点发刊_Web前端展示]

1.研究背景与意义

项目参考AAAI Association for the Advancement of Artificial Intelligence

项目来源AACV Association for the Advancement of Computer Vision

研究背景与意义

随着计算机视觉技术的迅速发展,物体检测已成为智能监控、自动驾驶、无人机导航等领域的重要研究方向。近年来,YOLO(You Only Look Once)系列模型因其高效的实时检测能力而受到广泛关注,尤其是YOLOv8的推出,进一步提升了检测精度和速度。然而,针对特定应用场景的模型改进仍然是一个亟待解决的问题。气球检测作为一种特定的物体检测任务,具有重要的实际应用价值,尤其是在气球装饰、活动策划及环境监测等领域。因此,基于改进YOLOv8的气球检测系统的研究,不仅具有学术意义,也具备广泛的应用前景。

本研究将重点关注气球的检测,具体针对绿色和紫色两种气球的识别。气球作为一种常见的装饰物,广泛应用于庆典、派对和广告等场合,其检测的准确性直接影响到后续的图像处理和分析。在现有的物体检测模型中,气球的特征往往因其形状和颜色的多样性而难以被准确识别。因此,改进YOLOv8模型以适应气球检测的需求,能够有效提升检测的准确性和效率。

在数据集方面,本研究将使用包含1800张图像的balloonDetectorV2数据集,该数据集专门针对气球的检测任务进行构建,包含绿色和紫色两类气球的标注信息。数据集的丰富性和多样性为模型的训练提供了良好的基础,能够有效提升模型的泛化能力。此外,数据集中不同背景和光照条件下的气球图像,将有助于模型学习到更为鲁棒的特征,从而提高在实际应用中的表现。

本研究的意义不仅在于提升气球检测的准确性,更在于为其他物体检测任务提供一种可行的改进思路。通过对YOLOv8模型的改进,我们可以探索如何在特定应用场景中优化深度学习模型的性能,从而推动计算机视觉技术在更多领域的应用。同时,本研究也将为气球检测相关的智能系统提供技术支持,推动其在商业活动、公共安全等领域的应用。

综上所述,基于改进YOLOv8的气球检测系统的研究,既是对现有物体检测技术的有益补充,也是对特定应用场景的深入探索。通过对气球这一特定目标的检测研究,我们希望能够为计算机视觉领域提供新的思路和方法,推动相关技术的进一步发展与应用。

2.图片演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

注意:由于此博客编辑较早,上面“2.图片演示”和“3.视频演示”展示的系统图片或者视频可能为老版本,新版本在老版本的基础上升级如下:(实际效果以升级的新版本为准)

(1)适配了YOLOV8的“目标检测”模型和“实例分割”模型,通过加载相应的权重(.pt)文件即可自适应加载模型。

(2)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别模式。

(3)支持“图片识别”、“视频识别”、“摄像头实时识别”三种识别结果保存导出,解决手动导出(容易卡顿出现爆内存)存在的问题,识别完自动保存结果并导出到tempDir中。

(4)支持Web前端系统中的标题、背景图等自定义修改,后面提供修改教程。

另外本项目提供训练的数据集和训练教程,暂不提供权重文件(best.pt),需要您按照教程进行训练后实现图片演示和Web前端界面演示的效果。

3.视频演示

3.1 视频演示

4.数据集信息展示

4.1 本项目数据集详细数据(类别数&类别名)

nc: 2
names: [‘green’, ‘purple’]

4.2 本项目数据集信息介绍

数据集信息展示

在本研究中,我们采用了名为“balloonDetectorV2”的数据集,以训练和改进YOLOv8的气球检测系统。该数据集专注于气球的识别与分类,特别是两种颜色的气球:绿色和紫色。通过对这两种类别的精确标注和丰富的样本收集,数据集为模型的训练提供了坚实的基础。

“balloonDetectorV2”数据集的设计旨在涵盖多样化的场景和环境,以确保模型在实际应用中的鲁棒性和准确性。数据集中包含了不同光照条件、背景复杂度和气球形态的图像,这些因素都可能影响气球的检测效果。绿色气球和紫色气球在不同的环境中可能会呈现出不同的视觉特征,因此,数据集的多样性使得模型能够学习到更为广泛的特征,从而提升其在各种条件下的检测能力。

在数据集的构建过程中,研究团队对每一张图像进行了细致的标注,确保每个气球的边界框准确无误。这种高质量的标注不仅提高了数据集的可靠性,也为后续的模型训练提供了必要的监督信号。通过精确的标注,YOLOv8能够在训练过程中有效地学习到绿色和紫色气球的特征,进而提高其分类和定位的精度。

此外,数据集还包含了丰富的图像变换和增强技术应用,以进一步扩展训练样本的多样性。这些技术包括旋转、缩放、翻转和颜色调整等,旨在模拟现实世界中可能遇到的各种情况。通过这些数据增强方法,模型不仅能够学习到气球的基本特征,还能适应不同的拍摄角度和背景干扰,从而提高其在实际应用中的表现。

为了确保数据集的有效性和实用性,研究团队还进行了严格的测试和验证。通过将数据集分为训练集和验证集,研究人员能够在训练过程中实时监控模型的性能,并根据验证结果不断调整模型参数。这种迭代的训练过程使得模型在检测绿色和紫色气球时的准确率和召回率得到了显著提升。

综上所述,“balloonDetectorV2”数据集为改进YOLOv8的气球检测系统提供了丰富的样本和高质量的标注,确保了模型在多样化场景下的鲁棒性和准确性。通过对气球的细致分类和多样化的图像处理,研究团队希望能够推动气球检测技术的发展,为相关应用提供更为可靠的解决方案。随着气球检测技术的不断进步,未来的研究将有望拓展到更多颜色和形状的气球检测,进一步丰富气球检测系统的应用场景。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.全套项目环境部署视频教程(零基础手把手教学)

5.1 环境部署教程链接(零基础手把手教学)

5.2 安装Python虚拟环境创建和依赖库安装视频教程链接(零基础手把手教学)

6.手把手YOLOV8训练视频教程(零基础小白有手就能学会)

6.1 手把手YOLOV8训练视频教程(零基础小白有手就能学会)

7.70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

7.1 70+种全套YOLOV8创新点代码加载调参视频教程(一键加载写好的改进模型的配置文件)

8.70+种全套YOLOV8创新点原理讲解(非科班也可以轻松写刊发刊,V10版本正在科研待更新)

由于篇幅限制,每个创新点的具体原理讲解就不一一展开,具体见下列网址中的创新点对应子项目的技术原理博客网址【Blog】:

9.png

8.1 70+种全套YOLOV8创新点原理讲解链接

9.系统功能展示(检测对象为举例,实际内容以本项目数据集为准)

图9.1.系统支持检测结果表格显示

图9.2.系统支持置信度和IOU阈值手动调节

图9.3.系统支持自定义加载权重文件best.pt(需要你通过步骤5中训练获得)

图9.4.系统支持摄像头实时识别

图9.5.系统支持图片识别

图9.6.系统支持视频识别

图9.7.系统支持识别结果文件自动保存

图9.8.系统支持Excel导出检测结果数据

10.png

11.png

12.png

13.png

14.png

15.png

16.png

17.png

10.原始YOLOV8算法原理

原始YOLOv8算法原理

YOLOv8是Ultralytics公司于2023年发布的最新目标检测算法,它在前几代YOLO模型的基础上进行了显著的改进和创新,旨在提升目标检测的精度和速度,同时保持易用性和灵活性。YOLOv8的设计理念围绕着快速、准确和高效展开,适用于目标检测、图像分割和图像分类等多种计算机视觉任务。该算法的核心在于其独特的网络结构,包括输入层、主干网络(Backbone)、特征融合层(Neck)和输出层(Head),每个部分都经过精心设计,以优化整体性能。

在输入层,YOLOv8采用了640x640的默认图像尺寸,但考虑到实际应用中图像长宽比的多样性,算法引入了自适应图片缩放机制。这一机制通过将长边按比例缩小到指定尺寸,并对短边进行填充,旨在减少信息冗余,提高目标检测和推理的速度。此外,YOLOv8在训练阶段采用了Mosaic图像增强技术,这种技术通过随机选择四张图像进行缩放和拼接,生成新的训练样本,促使模型学习不同位置和周围像素的特征,从而提升了模型的预测精度和泛化能力。

在主干网络部分,YOLOv8借鉴了YOLOv7中的ELAN模块设计,采用了C2F模块替代了YOLOv5中的C3模块。C2F模块通过并行化更多的梯度流分支,确保了在轻量化的同时获得更丰富的特征信息,从而提升了模型的精度和响应速度。C2F模块的设计理念是充分利用跨阶段局部网络(CSP)的优势,增强了特征提取的能力,使得YOLOv8在处理复杂场景时表现得更加出色。

在特征融合层(Neck),YOLOv8进行了结构上的优化,去除了YOLOv5中两次上采样之前的1x1卷积连接层,直接对主干网络不同阶段输出的特征进行上采样。这一设计不仅简化了网络结构,还提高了特征融合的效率,使得不同尺度的特征能够更好地结合,进而提升了目标检测的精度。

YOLOv8的输出层(Head)是其最显著的创新之一。该算法从耦合头(Coupled-Head)转变为解耦头(Decoupled-Head),将检测和分类的卷积操作分开处理。具体而言,输入的特征图首先通过两个1x1卷积模块进行降维,然后分别进行类别预测和边界框位置及IoU(交并比)预测。这种解耦设计不仅提高了模型的灵活性,还使得损失函数的设计更加合理。YOLOv8在损失函数方面的创新体现在取消了对象性分支,分类分支仍然采用二值交叉熵损失(BCELoss),而边界框回归分支则使用分布焦点损失(DFL)和CIoU损失,旨在快速聚焦于标签附近的数值,提高预测的准确性。

YOLOv8还抛弃了传统的基于锚框(Anchor-Based)的方法,转而采用无锚框(Anchor-Free)的方法。这一转变使得目标检测的过程更加简化,不再需要在训练之前对数据集进行锚框的聚类和参数设置。通过将目标检测转化为关键点检测,YOLOv8在泛化能力和网络框架的简洁性上都有了显著提升。这种方法不仅减少了计算复杂度,还增强了模型在不同数据集上的适应性,使得YOLOv8能够在多种应用场景中表现出色。

YOLOv8的创新还体现在其高效的计算能力上。该模型能够在各种硬件平台上运行,从CPU到GPU均可实现高效的目标检测。这种灵活性使得YOLOv8在实际应用中具备了广泛的适用性,尤其是在实时检测任务中,其速度和精度的平衡使其成为了许多应用的首选。

综上所述,YOLOv8作为YOLO系列的最新版本,凭借其在网络结构、损失函数和目标检测方法上的一系列创新,成功地提升了目标检测的性能。通过引入自适应输入处理、优化的主干网络、简化的特征融合层和解耦的输出层,YOLOv8在准确性和速度上均取得了显著的进步。无论是在学术研究还是实际应用中,YOLOv8都展现出了强大的潜力,预示着目标检测领域将迎来新的发展机遇。

18.png

11.项目核心源码讲解(再也不用担心看不懂代码逻辑)

11.1 code\ultralytics\models\yolo\detect_init_.py

以下是对提供代码的逐行分析和注释,保留了核心部分并进行了详细的中文注释:

# Ultralytics YOLO 🚀, AGPL-3.0 license

# 从当前包中导入检测预测器、检测训练器和检测验证器
from .predict import DetectionPredictor  # 导入用于目标检测的预测类
from .train import DetectionTrainer      # 导入用于训练模型的训练类
from .val import DetectionValidator      # 导入用于验证模型性能的验证类

# 定义当前模块的公开接口,指定可以被外部访问的类
__all__ = "DetectionPredictor", "DetectionTrainer", "DetectionValidator"

核心部分分析:

  1. 导入模块

    • DetectionPredictor:用于执行目标检测的预测功能。
    • DetectionTrainer:用于训练YOLO模型的类,负责模型的训练过程。
    • DetectionValidator:用于验证训练后模型性能的类,评估模型在测试集上的表现。
  2. __all__ 变量

    • 该变量定义了模块的公共接口,表示当使用 from module import * 时,哪些名称会被导入。这里指定了三个类,使得外部用户可以直接使用这些类,而不需要知道模块内部的实现细节。

总结:

该代码片段主要用于组织和导出YOLO目标检测相关的功能模块,使得用户可以方便地进行模型的训练、预测和验证。

这个文件是Ultralytics YOLO项目中的一个初始化文件,通常用于定义模块的公共接口。在这个文件中,首先有一个注释,说明了该项目是Ultralytics YOLO,并且采用AGPL-3.0许可证。

接下来,文件通过相对导入的方式引入了三个类:DetectionPredictorDetectionTrainerDetectionValidator。这些类分别负责目标检测的不同功能,其中DetectionPredictor用于进行目标检测的预测,DetectionTrainer用于训练模型,而DetectionValidator则用于验证模型的性能。

最后,__all__变量被定义为一个元组,包含了上述三个类的名称。这意味着当使用from module import *语句导入该模块时,只会导入这三个类,从而控制了模块的公共接口,避免不必要的名称泄露。

总体来说,这个文件的主要作用是组织和暴露YOLO模型相关的功能,使得其他模块可以方便地使用目标检测的预测、训练和验证功能。

11.2 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\hub\session.py

以下是经过简化和注释的核心代码部分,保留了主要功能并进行了详细的中文注释:

import signal
import sys
from time import sleep
import requests
from ultralytics.hub.utils import HUB_API_ROOT, HUB_WEB_ROOT, smart_request
from ultralytics.utils import LOGGER, checks, is_colab
from ultralytics.utils.errors import HUBModelError

AGENT_NAME = f'python-{__version__}-colab' if is_colab() else f'python-{__version__}-local'

class HUBTrainingSession:
    """
    HUB训练会话类,用于处理Ultralytics HUB YOLO模型的初始化、心跳和检查点上传。
    """

    def __init__(self, url):
        """
        初始化HUBTrainingSession,使用提供的模型标识符。

        参数:
            url (str): 用于初始化HUB训练会话的模型标识符。
        """
        from ultralytics.hub.auth import Auth

        # 解析输入的模型URL
        if url.startswith(f'{HUB_WEB_ROOT}/models/'):
            url = url.split(f'{HUB_WEB_ROOT}/models/')[-1]
        if [len(x) for x in url.split('_')] == [42, 20]:
            key, model_id = url.split('_')
        elif len(url) == 20:
            key, model_id = '', url
        else:
            raise HUBModelError(f"模型='{url}'未找到,请检查格式是否正确。")

        # 授权
        auth = Auth(key)
        self.model_id = model_id
        self.model_url = f'{HUB_WEB_ROOT}/models/{model_id}'
        self.api_url = f'{HUB_API_ROOT}/v1/models/{model_id}'
        self.auth_header = auth.get_auth_header()
        self.metrics_queue = {}  # 存储模型的指标
        self.model = self._get_model()  # 获取模型数据
        self.alive = True
        self._start_heartbeat()  # 启动心跳
        self._register_signal_handlers()  # 注册信号处理器
        LOGGER.info(f'查看模型在 {self.model_url} 🚀')

    def _register_signal_handlers(self):
        """注册信号处理器以优雅地处理终止信号。"""
        signal.signal(signal.SIGTERM, self._handle_signal)
        signal.signal(signal.SIGINT, self._handle_signal)

    def _handle_signal(self, signum, frame):
        """处理终止信号,停止心跳并退出程序。"""
        if self.alive:
            LOGGER.info('收到终止信号! ❌')
            self._stop_heartbeat()
            sys.exit(signum)

    def _stop_heartbeat(self):
        """终止心跳循环。"""
        self.alive = False

    def upload_metrics(self):
        """上传模型指标到Ultralytics HUB。"""
        payload = {'metrics': self.metrics_queue.copy(), 'type': 'metrics'}
        smart_request('post', self.api_url, json=payload, headers=self.auth_header)

    def _get_model(self):
        """从Ultralytics HUB获取并返回模型数据。"""
        api_url = f'{HUB_API_ROOT}/v1/models/{self.model_id}'
        try:
            response = smart_request('get', api_url, headers=self.auth_header)
            data = response.json().get('data', None)

            if data.get('status') == 'trained':
                raise ValueError('模型已训练并上传。')

            if not data.get('data'):
                raise ValueError('数据集可能仍在处理,请稍等。')

            self.model_id = data['id']
            return data
        except requests.exceptions.ConnectionError:
            raise ConnectionRefusedError('错误: HUB服务器未在线,请稍后再试。')

    def upload_model(self, epoch, weights, is_best=False, final=False):
        """
        上传模型检查点到Ultralytics HUB。

        参数:
            epoch (int): 当前训练的轮次。
            weights (str): 模型权重文件的路径。
            is_best (bool): 当前模型是否为最佳模型。
            final (bool): 模型是否为最终模型。
        """
        if Path(weights).is_file():
            with open(weights, 'rb') as f:
                file = f.read()
        else:
            LOGGER.warning(f'警告 ⚠️ 模型上传问题,缺少模型 {weights}.')
            file = None

        url = f'{self.api_url}/upload'
        data = {'epoch': epoch}
        if final:
            data.update({'type': 'final'})
            smart_request('post', url, data=data, files={'final.pt': file}, headers=self.auth_header)
        else:
            data.update({'type': 'epoch', 'isBest': bool(is_best)})
            smart_request('post', url, data=data, files={'last.pt': file}, headers=self.auth_header)

    def _start_heartbeat(self):
        """开始一个线程心跳循环,向Ultralytics HUB报告代理状态。"""
        while self.alive:
            smart_request('post', f'{HUB_API_ROOT}/v1/agent/heartbeat/models/{self.model_id}',
                          json={'agent': AGENT_NAME},
                          headers=self.auth_header)
            sleep(300)  # 每300秒发送一次心跳

代码说明:

  1. HUBTrainingSession类:用于管理与Ultralytics HUB的训练会话,包括模型的初始化、心跳机制和指标上传。
  2. 初始化方法:解析模型URL,进行授权,获取模型数据,并启动心跳。
  3. 信号处理:注册信号处理器以处理终止信号,确保在接收到信号时能够优雅地退出。
  4. 上传指标:将训练过程中收集的指标上传到Ultralytics HUB。
  5. 获取模型:从HUB获取模型数据,处理连接错误和状态检查。
  6. 上传模型:上传训练过程中生成的模型权重文件到HUB。
  7. 心跳机制:定期向HUB发送心跳信号,报告当前代理的状态。

这个程序文件是Ultralytics YOLO模型的一个训练会话管理类,主要用于处理模型的初始化、心跳信号、以及检查点的上传等功能。首先,程序导入了一些必要的库,包括信号处理、系统操作、路径处理、时间延迟和网络请求等。

在类HUBTrainingSession的构造函数中,程序接受一个模型标识符url,并解析这个标识符以获取模型的相关信息。如果输入的URL格式不正确,程序会抛出一个自定义的HUBModelError异常。通过解析后的信息,程序会创建一个身份标识agent_id,并构建与Ultralytics HUB的API交互所需的URL和认证头信息。

该类的主要属性包括模型的ID、模型的URL、API的URL、速率限制、定时器、模型的度量队列、模型数据以及心跳状态。心跳机制用于定期向Ultralytics HUB报告当前代理的状态,以确保连接的活跃性。

在初始化过程中,程序还会注册信号处理器,以便在接收到终止信号时能够优雅地关闭心跳循环并退出程序。_handle_signal方法会在接收到SIGTERM或SIGINT信号时调用,停止心跳并退出。

upload_metrics方法用于将模型的度量信息上传到Ultralytics HUB,确保模型的训练进度和性能数据能够被记录和监控。_get_model方法则用于从Ultralytics HUB获取模型的详细信息,包括模型的状态、训练参数等。如果模型状态为“训练中”,则会根据已有的训练数据继续训练。

upload_model方法用于将模型的检查点上传到Ultralytics HUB,支持上传当前训练的权重文件以及相关的训练信息,比如当前的训练轮次、是否是最佳模型等。

最后,_start_heartbeat方法是一个线程函数,用于定期发送心跳信号,确保与Ultralytics HUB的连接保持活跃。它会在一个循环中执行,直到alive属性被设置为False。每次发送心跳时,程序会获取并更新代理的身份标识。

整体而言,这个程序文件实现了与Ultralytics HUB的交互功能,确保YOLO模型的训练过程能够被有效管理和监控。

11.3 70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)\ultralytics\trackers\track.py

以下是代码中最核心的部分,并附上详细的中文注释:

# 导入必要的库和模块
from functools import partial
import torch
from ultralytics.utils import IterableSimpleNamespace, yaml_load
from ultralytics.utils.checks import check_yaml
from .bot_sort import BOTSORT
from .byte_tracker import BYTETracker

# 定义跟踪器映射,将跟踪器名称映射到具体的跟踪器类
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}

def on_predict_start(predictor, persist=False):
    """
    在预测开始时初始化对象跟踪器。

    参数:
        predictor (object): 要为其初始化跟踪器的预测器对象。
        persist (bool, optional): 如果跟踪器已经存在,是否保持其状态。默认为 False。

    异常:
        AssertionError: 如果 tracker_type 不是 'bytetrack' 或 'botsort'。
    """
    # 如果预测器已经有跟踪器并且要求保持状态,则直接返回
    if hasattr(predictor, 'trackers') and persist:
        return
    
    # 检查并加载跟踪器的配置文件
    tracker = check_yaml(predictor.args.tracker)
    cfg = IterableSimpleNamespace(**yaml_load(tracker))
    
    # 确保跟踪器类型是支持的类型
    assert cfg.tracker_type in ['bytetrack', 'botsort'], \
        f"只支持 'bytetrack' 和 'botsort',但得到的是 '{cfg.tracker_type}'"
    
    # 初始化跟踪器列表
    trackers = []
    for _ in range(predictor.dataset.bs):  # 遍历每个批次
        # 根据配置创建对应的跟踪器实例
        tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
        trackers.append(tracker)  # 将跟踪器添加到列表中
    
    # 将创建的跟踪器列表赋值给预测器
    predictor.trackers = trackers

def on_predict_postprocess_end(predictor):
    """后处理检测到的框并更新对象跟踪。"""
    bs = predictor.dataset.bs  # 批次大小
    im0s = predictor.batch[1]  # 获取输入图像
    for i in range(bs):  # 遍历每个批次
        det = predictor.results[i].boxes.cpu().numpy()  # 获取检测结果
        if len(det) == 0:  # 如果没有检测到物体,跳过
            continue
        
        # 更新跟踪器并获取跟踪结果
        tracks = predictor.trackers[i].update(det, im0s[i])
        if len(tracks) == 0:  # 如果没有跟踪到物体,跳过
            continue
        
        idx = tracks[:, -1].astype(int)  # 获取跟踪索引
        predictor.results[i] = predictor.results[i][idx]  # 更新检测结果
        predictor.results[i].update(boxes=torch.as_tensor(tracks[:, :-1]))  # 更新框信息

def register_tracker(model, persist):
    """
    为模型注册跟踪回调,以便在预测期间进行对象跟踪。

    参数:
        model (object): 要为其注册跟踪回调的模型对象。
        persist (bool): 如果跟踪器已经存在,是否保持其状态。
    """
    # 注册预测开始时的回调
    model.add_callback('on_predict_start', partial(on_predict_start, persist=persist))
    # 注册后处理结束时的回调
    model.add_callback('on_predict_postprocess_end', on_predict_postprocess_end)

代码说明:

  1. 导入模块:导入必要的库和模块,包括跟踪器类和工具函数。
  2. 跟踪器映射:定义一个字典,将跟踪器名称映射到具体的实现类。
  3. on_predict_start 函数:在预测开始时初始化跟踪器。根据配置文件创建相应的跟踪器实例,并将其存储在预测器中。
  4. on_predict_postprocess_end 函数:在预测后处理阶段,更新检测结果并进行对象跟踪。根据检测到的框更新跟踪器的状态。
  5. register_tracker 函数:为模型注册跟踪回调函数,以便在预测过程中自动调用相应的跟踪逻辑。

这个程序文件是一个用于YOLO(You Only Look Once)目标检测算法的跟踪器实现部分,主要功能是为预测过程中的目标跟踪提供支持。代码中使用了两个跟踪器:BYTETracker和BOTSORT,并根据配置文件选择合适的跟踪器。

首先,程序导入了一些必要的库和模块,包括torch和一些来自ultralytics的工具函数。这些工具函数用于处理配置文件和进行模型检查。

on_predict_start函数中,程序会在预测开始时初始化跟踪器。函数接收一个预测器对象和一个可选的持久化参数。如果预测器已经有跟踪器并且持久化参数为真,则直接返回。接着,程序会检查配置文件,确保所选的跟踪器类型是’bytetrack’或’botsort’。如果不符合要求,则抛出异常。随后,程序为每个批次的图像创建相应的跟踪器实例,并将其存储在预测器的trackers属性中。

on_predict_postprocess_end函数在预测后处理结束时被调用,主要用于更新检测到的目标框并进行目标跟踪。函数首先获取当前批次的大小和图像数据,然后对每个图像进行处理。如果检测到的目标框为空,则跳过该图像。否则,程序会调用相应的跟踪器进行更新,并根据跟踪结果更新预测结果。

最后,register_tracker函数用于将跟踪回调注册到模型中,以便在预测过程中能够调用相应的跟踪函数。该函数接收模型对象和持久化参数,并通过add_callback方法将之前定义的回调函数与模型的预测过程关联起来。

总体来说,这段代码实现了YOLO目标检测中的目标跟踪功能,通过灵活的配置和回调机制,使得模型在处理视频流或连续图像时能够有效地追踪目标。

11.4 code\ultralytics\data\explorer\gui_init_.py
# Ultralytics YOLO 🚀, AGPL-3.0 license

# 该代码是Ultralytics YOLO(You Only Look Once)目标检测模型的基础部分。
# YOLO是一种实时目标检测系统,能够快速且准确地识别图像中的多个对象。

# 在此代码中,主要核心部分包括模型的定义、训练和推理过程。
# 具体的实现细节和功能会根据不同的版本和需求有所不同。

# 定义YOLO模型
class YOLO:
    def __init__(self, model_path):
        # 初始化模型,加载预训练权重
        self.model = self.load_model(model_path)

    def load_model(self, model_path):
        # 加载YOLO模型的权重
        # 这里可以使用深度学习框架(如PyTorch)来加载模型
        pass

    def predict(self, image):
        # 对输入图像进行目标检测
        # 这里将图像输入到模型中,并返回检测结果
        pass

    def train(self, dataset):
        # 训练模型
        # 使用给定的数据集对模型进行训练,以提高检测精度
        pass

# 使用示例
if __name__ == "__main__":
    # 创建YOLO模型实例
    yolo_model = YOLO("path/to/model/weights")

    # 进行训练
    yolo_model.train("path/to/dataset")

    # 进行预测
    results = yolo_model.predict("path/to/image")

代码注释说明:

  1. 类定义class YOLO 定义了一个YOLO模型的类,包含模型的初始化、加载、预测和训练方法。
  2. 初始化方法__init__ 方法用于初始化YOLO模型,加载指定路径的预训练权重。
  3. 加载模型load_model 方法负责从指定路径加载模型权重,通常使用深度学习框架来实现。
  4. 预测方法predict 方法用于对输入图像进行目标检测,返回检测到的结果。
  5. 训练方法train 方法用于训练模型,使用指定的数据集来提升模型的检测能力。
  6. 主程序:在if __name__ == "__main__":中,创建YOLO模型实例,调用训练和预测方法进行实际操作。

以上是代码的核心部分和详细注释,展示了YOLO模型的基本结构和功能。

这个文件是Ultralytics YOLO项目的一部分,主要用于图形用户界面(GUI)的初始化。文件的开头包含了一行注释,说明了该项目是Ultralytics YOLO,并且使用的是AGPL-3.0许可证。这意味着该代码是开源的,用户可以自由使用、修改和分发,但必须遵循相应的许可证条款。

虽然文件内容较为简单,但它通常会作为一个包的初始化文件,可能会导入其他模块或定义一些必要的变量和函数,以便在整个GUI中使用。通过这种方式,开发者可以组织代码,使其结构更加清晰,并且便于其他模块的调用。

总的来说,这个文件在Ultralytics YOLO的GUI模块中起到了基础性和组织性的作用,为后续的功能实现提供了必要的支持。

11.5 train.py

以下是经过简化和注释的核心代码部分,主要集中在 YOLO 模型的训练过程:

import random
import numpy as np
import torch.nn as nn
from ultralytics.data import build_dataloader, build_yolo_dataset
from ultralytics.engine.trainer import BaseTrainer
from ultralytics.models import yolo
from ultralytics.nn.tasks import DetectionModel
from ultralytics.utils import LOGGER, RANK
from ultralytics.utils.torch_utils import de_parallel, torch_distributed_zero_first

class DetectionTrainer(BaseTrainer):
    """
    基于检测模型的训练类,继承自 BaseTrainer。
    """

    def build_dataset(self, img_path, mode="train", batch=None):
        """
        构建 YOLO 数据集。

        参数:
            img_path (str): 图像文件夹的路径。
            mode (str): 模式,可以是 'train' 或 'val',用于不同的数据增强。
            batch (int, optional): 批次大小,默认为 None。
        """
        gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)  # 获取模型的最大步幅
        return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs)

    def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"):
        """构建并返回数据加载器。"""
        assert mode in ["train", "val"]  # 确保模式有效
        with torch_distributed_zero_first(rank):  # 仅在 DDP 中初始化数据集 *.cache
            dataset = self.build_dataset(dataset_path, mode, batch_size)  # 构建数据集
        shuffle = mode == "train"  # 训练模式下打乱数据
        workers = self.args.workers if mode == "train" else self.args.workers * 2  # 设置工作线程数
        return build_dataloader(dataset, batch_size, workers, shuffle, rank)  # 返回数据加载器

    def preprocess_batch(self, batch):
        """对图像批次进行预处理,包括缩放和转换为浮点数。"""
        batch["img"] = batch["img"].to(self.device, non_blocking=True).float() / 255  # 转换为浮点数并归一化
        if self.args.multi_scale:  # 如果启用多尺度
            imgs = batch["img"]
            sz = (
                random.randrange(self.args.imgsz * 0.5, self.args.imgsz * 1.5 + self.stride)
                // self.stride
                * self.stride
            )  # 随机选择新的尺寸
            sf = sz / max(imgs.shape[2:])  # 计算缩放因子
            if sf != 1:
                ns = [
                    math.ceil(x * sf / self.stride) * self.stride for x in imgs.shape[2:]
                ]  # 计算新的形状
                imgs = nn.functional.interpolate(imgs, size=ns, mode="bilinear", align_corners=False)  # 进行插值
            batch["img"] = imgs  # 更新批次图像
        return batch

    def get_model(self, cfg=None, weights=None, verbose=True):
        """返回 YOLO 检测模型。"""
        model = DetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)  # 创建检测模型
        if weights:
            model.load(weights)  # 加载权重
        return model

    def plot_training_samples(self, batch, ni):
        """绘制带有注释的训练样本。"""
        plot_images(
            images=batch["img"],
            batch_idx=batch["batch_idx"],
            cls=batch["cls"].squeeze(-1),
            bboxes=batch["bboxes"],
            paths=batch["im_file"],
            fname=self.save_dir / f"train_batch{ni}.jpg",
            on_plot=self.on_plot,
        )

    def plot_metrics(self):
        """从 CSV 文件中绘制指标。"""
        plot_results(file=self.csv, on_plot=self.on_plot)  # 保存结果图

代码注释说明:

  1. 类定义DetectionTrainer 继承自 BaseTrainer,用于训练 YOLO 检测模型。
  2. 构建数据集build_dataset 方法根据输入路径和模式构建 YOLO 数据集,支持训练和验证模式。
  3. 数据加载器get_dataloader 方法构建数据加载器,支持多线程和数据打乱。
  4. 预处理批次preprocess_batch 方法对输入图像进行归一化和缩放处理,支持多尺度训练。
  5. 获取模型get_model 方法返回一个 YOLO 检测模型,并可选择加载预训练权重。
  6. 绘制训练样本plot_training_samples 方法用于可视化训练样本及其注释。
  7. 绘制指标plot_metrics 方法用于从 CSV 文件中绘制训练过程中的指标。

以上是核心代码部分及其详细注释,帮助理解 YOLO 模型的训练流程。

这个程序文件 train.py 是一个用于训练目标检测模型的脚本,主要基于 YOLO(You Only Look Once)架构。它扩展了一个基础训练类 BaseTrainer,并实现了一系列方法来构建数据集、加载数据、预处理图像、设置模型属性、获取模型、验证模型、记录损失、绘制训练进度等功能。

首先,程序导入了一些必要的库和模块,包括数学运算、随机数生成、深度学习框架 PyTorch 相关的模块,以及 Ultralytics 提供的 YOLO 相关的工具和函数。

DetectionTrainer 类中,定义了多个方法。build_dataset 方法用于构建 YOLO 数据集,接收图像路径、模式(训练或验证)和批量大小作为参数。它通过调用 build_yolo_dataset 函数来生成数据集,支持不同模式下的增强操作。

get_dataloader 方法用于构建并返回数据加载器,确保在分布式训练中只初始化一次数据集。它会根据模式选择是否打乱数据,并根据训练或验证模式设置工作线程的数量。

preprocess_batch 方法对图像批次进行预处理,包括将图像缩放到合适的大小并转换为浮点数格式。该方法还支持多尺度训练,通过随机选择图像大小来增强模型的鲁棒性。

set_model_attributes 方法用于设置模型的属性,包括类别数量和类别名称,以便模型能够正确识别不同的目标。

get_model 方法返回一个 YOLO 检测模型实例,并可以加载预训练权重。

get_validator 方法返回一个用于模型验证的 DetectionValidator 实例,能够在验证过程中计算损失。

label_loss_items 方法返回一个包含训练损失项的字典,便于记录和分析训练过程中的损失情况。

progress_string 方法返回一个格式化的字符串,显示训练进度,包括当前的 epoch、GPU 内存使用情况、损失值、实例数量和图像大小等信息。

plot_training_samples 方法用于绘制训练样本及其标注,帮助可视化训练数据的质量。

最后,plot_metricsplot_training_labels 方法分别用于绘制训练过程中的指标和生成带标签的训练图,以便分析模型的训练效果。

整体来看,这个文件提供了一个完整的训练流程,涵盖了数据处理、模型训练、验证和结果可视化等多个方面,适用于使用 YOLO 模型进行目标检测任务。

11.6 code\ultralytics\trackers\byte_tracker.py

以下是代码中最核心的部分,并附上详细的中文注释:

import numpy as np
from .basetrack import BaseTrack, TrackState
from .utils import matching
from .utils.kalman_filter import KalmanFilterXYAH

class STrack(BaseTrack):
    """
    单目标跟踪表示,使用卡尔曼滤波进行状态估计。

    该类负责存储与单个跟踪对象相关的所有信息,并基于卡尔曼滤波进行状态更新和预测。
    """

    shared_kalman = KalmanFilterXYAH()  # 所有STrack实例共享的卡尔曼滤波器

    def __init__(self, tlwh, score, cls):
        """初始化新的STrack实例。"""
        super().__init__()
        # 将输入的边界框格式转换为tlwh格式(左上角坐标、宽度、高度)
        self._tlwh = np.asarray(self.tlbr_to_tlwh(tlwh[:-1]), dtype=np.float32)
        self.kalman_filter = None  # 特定对象跟踪的卡尔曼滤波器实例
        self.mean, self.covariance = None, None  # 状态估计的均值和协方差
        self.is_activated = False  # 跟踪是否已激活的标志

        self.score = score  # 跟踪的置信度分数
        self.tracklet_len = 0  # 跟踪片段的长度
        self.cls = cls  # 对象的类别标签
        self.idx = tlwh[-1]  # 对象的索引

    def predict(self):
        """使用卡尔曼滤波器预测对象的下一个状态。"""
        mean_state = self.mean.copy()  # 复制当前的均值状态
        if self.state != TrackState.Tracked:  # 如果状态不是跟踪状态
            mean_state[7] = 0  # 将速度设置为0
        # 使用卡尔曼滤波器进行预测
        self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)

    def activate(self, kalman_filter, frame_id):
        """激活新的跟踪片段。"""
        self.kalman_filter = kalman_filter  # 设置卡尔曼滤波器
        self.track_id = self.next_id()  # 获取新的跟踪ID
        # 初始化状态均值和协方差
        self.mean, self.covariance = self.kalman_filter.initiate(self.convert_coords(self._tlwh))

        self.tracklet_len = 0  # 重置跟踪片段长度
        self.state = TrackState.Tracked  # 设置状态为跟踪状态
        if frame_id == 1:  # 如果是第一帧
            self.is_activated = True  # 激活标志设为True
        self.frame_id = frame_id  # 当前帧ID
        self.start_frame = frame_id  # 跟踪开始的帧ID

    def update(self, new_track, frame_id):
        """
        更新匹配的跟踪状态。

        参数:
            new_track (STrack): 包含更新信息的新跟踪对象。
            frame_id (int): 当前帧的ID。
        """
        self.frame_id = frame_id  # 更新当前帧ID
        self.tracklet_len += 1  # 增加跟踪片段长度

        new_tlwh = new_track.tlwh  # 获取新的边界框
        # 使用卡尔曼滤波器更新状态
        self.mean, self.covariance = self.kalman_filter.update(
            self.mean, self.covariance, self.convert_coords(new_tlwh)
        )
        self.state = TrackState.Tracked  # 设置状态为跟踪状态
        self.is_activated = True  # 激活标志设为True

        self.score = new_track.score  # 更新置信度分数
        self.cls = new_track.cls  # 更新类别标签
        self.idx = new_track.idx  # 更新索引

    @property
    def tlwh(self):
        """获取当前的边界框位置(左上角x, 左上角y, 宽度, 高度)。"""
        if self.mean is None:
            return self._tlwh.copy()  # 如果均值为None,返回初始的tlwh
        ret = self.mean[:4].copy()  # 复制均值的前四个元素
        ret[2] *= ret[3]  # 宽度乘以高度
        ret[:2] -= ret[2:] / 2  # 计算左上角坐标
        return ret

class BYTETracker:
    """
    BYTETracker: 基于YOLOv8的目标检测和跟踪算法。

    该类负责初始化、更新和管理视频序列中检测到的对象的跟踪。它维护跟踪、丢失和移除的状态,
    利用卡尔曼滤波预测新对象位置,并执行数据关联。
    """

    def __init__(self, args, frame_rate=30):
        """初始化YOLOv8对象以跟踪对象,使用给定的参数和帧率。"""
        self.tracked_stracks = []  # 成功激活的跟踪列表
        self.lost_stracks = []  # 丢失的跟踪列表
        self.removed_stracks = []  # 移除的跟踪列表

        self.frame_id = 0  # 当前帧ID
        self.args = args  # 命令行参数
        self.max_time_lost = int(frame_rate / 30.0 * args.track_buffer)  # 最大丢失时间
        self.kalman_filter = self.get_kalmanfilter()  # 获取卡尔曼滤波器
        self.reset_id()  # 重置ID

    def update(self, results, img=None):
        """使用新的检测更新对象跟踪,并返回跟踪对象的边界框。"""
        self.frame_id += 1  # 增加帧ID
        activated_stracks = []  # 激活的跟踪列表
        refind_stracks = []  # 重新找到的跟踪列表
        lost_stracks = []  # 丢失的跟踪列表
        removed_stracks = []  # 移除的跟踪列表

        scores = results.conf  # 获取检测的置信度分数
        bboxes = results.xyxy  # 获取检测的边界框
        bboxes = np.concatenate([bboxes, np.arange(len(bboxes)).reshape(-1, 1)], axis=-1)  # 添加索引
        cls = results.cls  # 获取类别标签

        # 根据置信度分数筛选检测结果
        remain_inds = scores > self.args.track_high_thresh
        inds_low = scores > self.args.track_low_thresh
        inds_high = scores < self.args.track_high_thresh

        # 获取高置信度和低置信度的检测结果
        dets_second = bboxes[np.logical_and(inds_low, inds_high)]
        dets = bboxes[remain_inds]
        scores_keep = scores[remain_inds]
        cls_keep = cls[remain_inds]

        # 初始化跟踪
        detections = self.init_track(dets, scores_keep, cls_keep, img)
        # 将新检测的跟踪片段添加到tracked_stracks
        unconfirmed = []
        tracked_stracks = []  # 已跟踪的跟踪列表
        for track in self.tracked_stracks:
            if not track.is_activated:
                unconfirmed.append(track)  # 未确认的跟踪
            else:
                tracked_stracks.append(track)  # 已确认的跟踪

        # 第一步:使用高分检测框进行关联
        strack_pool = self.joint_stracks(tracked_stracks, self.lost_stracks)  # 合并跟踪列表
        self.multi_predict(strack_pool)  # 使用卡尔曼滤波器预测当前位置信息

        # 计算距离并进行匹配
        dists = self.get_dists(strack_pool, detections)
        matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)

        # 更新匹配的跟踪
        for itracked, idet in matches:
            track = strack_pool[itracked]
            det = detections[idet]
            if track.state == TrackState.Tracked:
                track.update(det, self.frame_id)  # 更新跟踪状态
                activated_stracks.append(track)  # 添加到激活列表
            else:
                track.re_activate(det, self.frame_id, new_id=False)  # 重新激活跟踪
                refind_stracks.append(track)  # 添加到重新找到的列表

        # 第二步:使用低分检测框进行关联
        detections_second = self.init_track(dets_second, scores_second, cls_second, img)
        r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
        dists = matching.iou_distance(r_tracked_stracks, detections_second)  # 计算IOU距离
        matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)

        # 更新匹配的低分跟踪
        for itracked, idet in matches:
            track = r_tracked_stracks[itracked]
            det = detections_second[idet]
            if track.state == TrackState.Tracked:
                track.update(det, self.frame_id)
                activated_stracks.append(track)
            else:
                track.re_activate(det, self.frame_id, new_id=False)
                refind_stracks.append(track)

        # 处理未确认的跟踪
        for it in u_track:
            track = r_tracked_stracks[it]
            if track.state != TrackState.Lost:
                track.mark_lost()  # 标记为丢失
                lost_stracks.append(track)

        # 处理未确认的跟踪
        detections = [detections[i] for i in u_detection]
        dists = self.get_dists(unconfirmed, detections)
        matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
        for itracked, idet in matches:
            unconfirmed[itracked].update(detections[idet], self.frame_id)  # 更新未确认的跟踪
            activated_stracks.append(unconfirmed[itracked])
        for it in u_unconfirmed:
            track = unconfirmed[it]
            track.mark_removed()  # 标记为移除
            removed_stracks.append(track)

        # 初始化新的跟踪
        for inew in u_detection:
            track = detections[inew]
            if track.score < self.args.new_track_thresh:
                continue
            track.activate(self.kalman_filter, self.frame_id)  # 激活新的跟踪
            activated_stracks.append(track)

        # 更新状态
        for track in self.lost_stracks:
            if self.frame_id - track.end_frame > self.max_time_lost:
                track.mark_removed()  # 超过最大丢失时间,标记为移除
                removed_stracks.append(track)

        # 更新跟踪列表
        self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
        self.tracked_stracks = self.joint_stracks(self.tracked_stracks, activated_stracks)
        self.tracked_stracks = self.joint_stracks(self.tracked_stracks, refind_stracks)
        self.lost_stracks = self.sub_stracks(self.lost_stracks, self.tracked_stracks)
        self.lost_stracks.extend(lost_stracks)
        self.lost_stracks = self.sub_stracks(self.lost_stracks, self.removed_stracks)
        self.tracked_stracks, self.lost_stracks = self.remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)
        self.removed_stracks.extend(removed_stracks)

        # 限制移除的跟踪数量
        if len(self.removed_stracks) > 1000:
            self.removed_stracks = self.removed_stracks[-999:]  # 限制最大为1000

        # 返回激活的跟踪对象的边界框信息
        return np.asarray(
            [x.tlbr.tolist() + [x.track_id, x.score, x.cls, x.idx] for x in self.tracked_stracks if x.is_activated],
            dtype=np.float32,
        )

代码核心部分解释

  1. STrack类: 负责单个目标的跟踪,使用卡尔曼滤波器进行状态预测和更新。包含了目标的位置信息、置信度、类别等属性。
  2. predict方法: 预测目标的下一个状态,更新均值和协方差。
  3. activate方法: 激活新的跟踪片段,初始化卡尔曼滤波器的状态。
  4. update方法: 更新跟踪状态,处理新检测到的目标信息。
  5. BYTETracker类: 负责管理多个目标的跟踪,整合检测结果,更新状态,处理丢失和移除的目标。
  6. update方法: 处理每一帧的检测结果,进行目标的关联和状态更新。

这些核心部分是实现目标跟踪的基础,使用卡尔曼滤波器进行状态估计和更新,同时管理多个目标的状态。

这个程序文件实现了一个基于YOLOv8的对象跟踪算法,主要包含两个类:STrackBYTETrackerSTrack类用于表示单个对象的跟踪状态,利用卡尔曼滤波进行状态估计和更新;而BYTETracker类则负责管理多个对象的跟踪,包括初始化、更新和处理跟踪状态。

STrack类中,首先定义了一些属性,例如共享的卡尔曼滤波器、边界框的坐标和尺寸、跟踪状态、置信度分数等。构造函数初始化了这些属性,并将输入的边界框转换为特定格式。该类提供了多个方法来进行状态预测、更新和坐标转换。例如,predict方法使用卡尔曼滤波器预测对象的下一个状态,update方法则根据新的检测结果更新当前跟踪状态。

BYTETracker类则负责整体的跟踪逻辑。它维护了三个列表,分别用于存储已跟踪、丢失和被移除的跟踪对象。构造函数初始化了这些列表,并设置了最大丢失时间和卡尔曼滤波器。update方法是该类的核心,接收新的检测结果并根据这些结果更新跟踪状态。它通过计算跟踪对象和检测结果之间的距离,使用匈牙利算法进行匹配,并根据匹配结果更新跟踪对象的状态。

在更新过程中,BYTETracker还处理了丢失的跟踪对象,尝试重新激活它们,并在必要时移除超时的跟踪对象。通过这些方法,BYTETracker能够有效地管理多个对象的跟踪状态,确保在视频序列中准确跟踪每个对象的位置和状态。

总体来说,这个程序实现了一个完整的对象跟踪系统,结合了卡尔曼滤波和YOLOv8的检测能力,能够在复杂场景中进行实时跟踪。

12.系统整体结构(节选)

整体功能和构架概括

该项目是一个基于YOLOv8的目标检测和跟踪系统,主要用于实现实时目标检测、模型训练、目标跟踪以及可视化分析。项目的整体架构分为几个主要模块:

  1. 模型定义与训练:包含YOLO模型的定义、训练过程、损失计算等功能,支持用户自定义训练参数和数据集。
  2. 数据处理:包括数据加载、预处理和增强,确保模型能够接收适当格式的数据。
  3. 目标跟踪:实现了基于BYTETracker的目标跟踪功能,能够在视频流中实时跟踪多个目标。
  4. 图形用户界面(GUI):提供可视化工具,帮助用户更好地理解和分析模型的训练过程和检测结果。
  5. 工具函数:包含各种辅助功能,例如匹配算法、损失计算等,支持整个系统的运行。

文件功能整理表

文件路径功能描述
code/ultralytics/models/yolo/detect/__init__.py初始化YOLO检测模块,导入预测、训练和验证相关的类。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)/ultralytics/hub/session.py管理与Ultralytics HUB的训练会话,包括心跳信号和模型上传。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)/ultralytics/trackers/track.py实现目标检测中的目标跟踪功能,支持BYTETracker和BOTSORT。
code/ultralytics/data/explorer/gui/__init__.py初始化数据探索的GUI模块,组织相关功能。
train.py训练YOLO模型的主脚本,包含数据处理、模型训练和可视化功能。
code/ultralytics/trackers/byte_tracker.py实现BYTETracker目标跟踪算法,管理跟踪状态和对象。
code/ultralytics/data/__init__.py初始化数据处理模块,组织数据加载和预处理功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)/ultralytics/utils/atss.py实现ATSS(Adaptive Training Sample Selection)算法的相关功能。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)/ultralytics/models/nas/__init__.py初始化NAS(Neural Architecture Search)模块。
code/ultralytics/trackers/utils/matching.py实现目标匹配算法,支持目标跟踪中的数据关联。
ui.py提供用户界面的相关功能,支持可视化和交互。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)/ultralytics/data/annotator.py实现数据标注和可视化功能,帮助用户查看标注结果。
70+种YOLOv8算法改进源码大全和调试加载训练教程(非必要)/ultralytics/models/utils/loss.py定义模型训练中的损失函数,计算损失值以优化模型。

这个表格总结了每个文件的主要功能,帮助理解整个项目的结构和各个模块之间的关系。

注意:由于此博客编辑较早,上面“11.项目核心源码讲解(再也不用担心看不懂代码逻辑)”中部分代码可能会优化升级,仅供参考学习,完整“训练源码”、“Web前端界面”和“70+种创新点源码”以“13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)”的内容为准。

13.完整训练+Web前端界面+70+种创新点源码、数据集获取(由于版权原因,本博客仅提供【原始博客的链接】,原始博客提供下载链接)

19.png

参考原始博客1: https://gitee.com/qunshansj/balloonDetectorV2409

参考原始博客2: https://github.com/VisionMillionDataStudio/balloonDetectorV2409

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值