如何解决大模型的「幻觉」问题?克服大模型幻觉策略汇总!

本文汇总了针对大模型幻觉问题的研究,包括通过诱导幻觉缓解、OPERA解码、视觉对比解码、Woodpecker纠正、规则学习等方法,旨在提高模型的准确性和真实性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随着人工智能技术的不断发展,大模型在各个领域的应用越来越广泛。不过随着模型规模的增大,一个不容忽视的问题也逐渐浮现出来——幻觉问题,就是指模型在处理数据时产生的错误认知或偏差,这些问题可能会导致预测结果的偏差或误判。

那该如何解决大模型的「幻觉」问题呢?今天就汇总了一些各种克服大模型幻觉的相关论文,这些论文中提出了多种方法来缓解大模型中的幻觉问题,大家可以学习参考一下!

1、Alleviating Hallucinations of Large Language Models through Induced Hallucinations

通过诱发幻觉缓解大型语言模型的幻觉

简述:苏州大学和腾讯 AI Lab 的研究者提出了一种名为“诱导-然后-对比”解码(ICD)的策略,为了减少大型语言模型(LLMs)生成的幻觉(即不准确或捏造的信息)。这种方法首先创建一个易于产生幻觉的LLM,然后在解码时减少这些幻觉,从而提高内容的真实性。通过对比解码放大真实预测,降低不真实预测,确定最终预测。实验显示,应用ICD的模型在真实性评估上与ChatGPT和GPT4相媲美。

图片

2、OPERA: Alleviating Hallucination in Multi-Modal Large Language Models via Over

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值