【多源融合】Sage-Husa滤波完整推导

本文详细解析了Sage-Husa滤波器中基于新息(IAE)和残差(RAE)的观测噪声协方差矩阵自适应求解过程,涉及最大似然估计、卡尔曼滤波核心公式和协方差矩阵的推导。关键步骤包括误差向量处理、卡尔曼增益矩阵的应用和误差估计的迭代更新。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不知道有没有同学跟我一样,有时候碰到公式推不出来强迫症就犯了,Sage-husa滤波虽然存在一些问题,但是其背后数学理论的推导还是比较难的,我也是到处看资料寻摸了一天,终于弄会了。

Sage滤波包括对R矩阵和Q矩阵的自适应,毕竟有时候观测环境和传感器数据特征不会完全符合经验模型,所以采用自适应的方法自动估计R和Q矩阵。本文接下来将主要推导三种Sage滤波:基于新息的观测噪声协方差矩阵(Innovation Adaptive Estimation, IAE)、基于残差的观测噪声协方差矩阵(Residual Adaptive Estimation, RAE)、系统状态噪声协方差矩阵。

基础知识

t k t_k tk时刻先验状态 x k x_k xk,先验状态协方差矩阵 P k P_k Pk,观测值 z k z_k zk,后验状态 x ^ k \hat x_k x^k,后验状态协方差矩阵 P ^ k \hat P_k P^k
动力学模型
x k = A k x ^ k − 1 + w k (1) x_k=A_k\hat x_{k-1}+w_k\tag{1} xk=Akx^k1+wk(1)
量测模型
z k = H k x k + v k (2) z_k=H_kx_{k}+v_k\tag{2} zk=Hkxk+vk(2)
其中 A k A_k Ak H k H_k Hk分别为状态转移矩阵和系数矩阵, w k w_k wk v k v_k vk则是过程噪声和量测噪声,相应的协方差矩阵即为 Q k Q_k Qk R k R_k Rk

经典卡尔曼滤波状态更新过程
x k = A k x ^ k − 1 (3) x_k=A_k\hat x_{k-1}\tag{3} xk=Akx^k1(3)
P k = A k P ^ k − 1 A k T + Q k (4) P_k=A_k\hat P_{k-1}A_k^T+Q_k\tag{4} Pk=AkP^k1AkT+Qk(4)
经典卡尔曼滤波量测更新过程
K k = P k H k T ( H k P k H k + R k ) − 1 (5) K_k=P_kH_k^T(H_kP_kH_k+R_k)^{-1}\tag{5} Kk=PkHkT(HkPkHk+Rk)1(5)
x ^ k = x k + K k ( z k − H k x k ) (6) \hat x_k=x_k+K_k(z_k-H_kx_k)\tag{6} x^k=xk+Kk(zkHkxk)(6)
P ^ k = ( I − K k H k ) P k (7) \hat P_k=(I-K_kH_k)P_k\tag{7} P^k=(IKkHk)Pk(7)
其中,I为单位阵,得到的 v k = z k − H k x k v_k=z_k-H_kx_k vk=zkHkxk称为新息向量 v ^ k = z k − H k x ^ k \hat v_k=z_k-H_k\hat x_k v^k=zkHkx^k称为残差向量,主要区别在于残差向量经过了观测值的校正,相比于新息向量,残差向量更能反应动力学模型的误差。

接下来介绍Sage滤波如何自适应求解R和Q。

最大似然估计与自适应滤波

Sage滤波思路,开窗平均代替真实随机模型
C v k = 1 N ∑ j = 0 N v k − j v k − j T (8) C_{v_k}=\frac{1}{N} \sum_{j=0}^{N}v_{k-j}v_{k-j}^T\tag{8} Cvk=N1j=0NvkjvkjT(8)
这里的 v v v是误差,可以是新息向量,可以是残差向量,也可以是状态误差,相应协方差矩阵也是 R k R_k Rk Q k Q_k Qk

在自适应因子 α \alpha α为条件,观测值的概率密度函数写为
P ( z k ∣ α k ) = 1 ( 2 π ) m ∣ C v k ∣ e − 1 2 v k T C v k − 1 v k (9) P\left (z_k| \alpha_k \right)=\frac {1}{\sqrt{(2\pi)^m \left| C_{v_k}\right|}}e^{-\frac {1}{2}v_k^TC_{v_k}^{-1}v_k} \tag{9} P(zkαk)=(2π)mCvk 1e21vkTCvk1vk(9)
两边取对数
l n P ( z k ∣ α k ) = − 1 2 { m ∗ l n ( 2 π ) + l n ( ∣ C v k ∣ ) + v k T C v k − 1 v k } (10) lnP\left (z_k| \alpha_k \right)=-\frac {1}{2} \left\{m*ln(2\pi)+ln(|C_{v_k}|)+v_k^TC_{v_k}^{-1}v_k \right\} \tag{10} lnP(zkαk)=21{mln(2π)+ln(Cvk)+vkTCvk1vk}(10)
那么式(10)中的最大似然也就变成了式(11)最小
∑ j = j 0 k l n ∣ C v j ∣ + ∑ j = j 0 k v j T C v j − 1 v j = m i n (11) \sum_{j=j_0}^{k}ln|C_{v_j}|+\sum_{j=j_0}^{k}v_j^TC_{v_j}^{-1}v_j=min \tag{11} j=j0klnCvj+j=j0kvjTCvj1vj=min(11)
进一步,对式(11)关于自适应因子 α \alpha α求导
∑ j = j 0 k [ t r { C v j − 1 ∂ C v j ∂ α } − v j T C v j − 1 ∂ C v j ∂ α C v j − 1 v j ] = 0 (12) \sum_{j=j_0}^{k}[tr\{C_{v_j}^{-1}\frac {\partial C_{v_j}}{\partial \alpha} \}-v_j^TC_{v_j}^{-1}\frac {\partial C_{v_j}}{\partial \alpha}C_{v_j}^{-1}v_j]=0 \tag{12} j=j0k[tr{Cvj1αCvj}vjTCvj1αCvjCvj1vj]=0(12)

式(11)中出现了 C v k C_{v_k} Cvk,但是我们关心的是 R k R_k Rk Q k Q_k Qk,将三者关系表达出来( Q k Q_k Qk包含在 P k P_k Pk里)
C v k = R k + H k P k H k T (13) C_{v_k}=R_k+H_kP_kH_k^T\tag{13} Cvk=Rk+HkPkHkT(13)

对公式(13)关于自适应因子 α \alpha α求导
∂ C v k ∂ α = ∂ R k ∂ α + H k ∂ P k ∂ α H k T (14) \frac {\partial C_{v_k}}{\partial {\alpha}}=\frac {\partial {R_k}}{\partial {\alpha}}+H_k\frac {\partial P_k}{\partial \alpha}H_k^T\tag{14} αCvk=αRk+HkαPkHkT(14)
将公式(4)带入式(14),并考虑稳态 ∂ P ^ k − 1 ∂ α = 0 \frac {\partial \hat P_{k-1}}{\partial \alpha}=0 αP^k1=0
∂ C v k ∂ α = ∂ R k ∂ α + H k ∂ Q k ∂ α H k T (15) \frac {\partial C_{v_k}}{\partial {\alpha}}=\frac {\partial {R_k}}{\partial {\alpha}}+H_k\frac {\partial Q_k}{\partial \alpha}H_k^T\tag{15} αCvk=αRk+HkαQkHkT(15)
将公式(15)带入公式(12)
∑ j = j 0 k t r { [ C v j − 1 − C v j − 1 v j v j T C v j − 1 ] [ ∂ R j ∂ α + H j ∂ Q j − 1 ∂ α H j T ] } = 0 (16) \sum_{j=j_0}^{k}tr\{ [C_{v_j}^{-1}-C_{v_j}^{-1}v_jv_j^TC_{v_j}^{-1}][\frac {\partial R_j}{\partial \alpha}+H_j\frac {\partial Q_{j-1}}{\partial \alpha}H_j^T] \}=0 \tag{16} j=j0ktr{[Cvj1Cvj1vjvjTCvj1][αRj+HjαQj1HjT]}=0(16)
公式(16)显示, R k R_k Rk Q k Q_k Qk均关于 α \alpha α自适应。

基于新息的观测噪声协方差矩阵(IAE)

得到 R k R_k Rk自适应后,由开窗法估计新息协方差矩阵时,假设矩阵 Q k Q_k Qk已知并且与 α \alpha α无关,则有
∑ j = j 0 k t r { [ C v j − 1 − C v j − 1 v j v j T C v j − 1 ] [ I + 0 ] } = 0 (17) \sum_{j=j_0}^{k}tr\{ [C_{v_j}^{-1}-C_{v_j}^{-1}v_jv_j^TC_{v_j}^{-1}][I+0] \}=0 \tag{17} j=j0ktr{[Cvj1Cvj1vjvjTCvj1][I+0]}=0(17)
开窗法估计新息协方差矩阵 C v k C_{v_k} Cvk
C v k = 1 N ∑ j = 0 N v k − j v k − j T (18) C_{v_k}=\frac{1}{N} \sum_{j=0}^{N}v_{k-j}v_{k-j}^T\tag{18} Cvk=N1j=0NvkjvkjT(18)
由新息向量 v k = z k − H k x k v_k=z_k-H_kx_k vk=zkHkxk和协方差传播律得
C v k = R k + H k P k H k T (19) C_{v_k}=R_k+H_kP_kH_k^T\tag{19} Cvk=Rk+HkPkHkT(19)
进而可以估计 R k R_k Rk。(PS:这是最简单也最实用的)

基于残差的观测噪声协方差矩阵(RAE)

借助IAE中的思路,由残差向量 v ^ k \hat v_k v^k代替新息向量 v k v_k vk求解协方差矩阵
C v ^ k = 1 N ∑ j = 0 N v ^ k − j v ^ k − j T (20) C_{\hat v_k}=\frac{1}{N} \sum_{j=0}^{N}\hat v_{k-j}\hat v_{k-j}^T\tag{20} Cv^k=N1j=0Nv^kjv^kjT(20)
然后利用协方差传播律
C v ^ k = R k + H k P ^ k H k T (21) C_{\hat v_k}=R_k+H_k\hat P_kH_k^T\tag{21} Cv^k=Rk+HkP^kHkT(21)
万事大吉!(做梦,这是完全错误的估计方法,应该是完事大吉)
要搞清楚,按照协方差传播律,谁才是求和结果,按照观测值和残差向量的定义,公式应为 z k = H k x ^ k + v ^ k z_k=H_k\hat x_k+\hat v_k zk=Hkx^k+v^k(新息向量由预测状态推导,残差向量则是由后验状态推导)
最终,真正的协方差传播律为
R k = C v ^ k + H k P ^ k H k T (22) R_k=C_{\hat v_k}+H_k\hat P_kH_k^T\tag{22} Rk=Cv^k+HkP^kHkT(22)
但是式(11)中,要想估计 R k R_k Rk就要先知道 v ^ k \hat v_k v^k,但是这玩意儿又要求 R k R_k Rk先知道(死循环),所以采用前 N N N个历元来近似估计当前时刻的 R k R_k Rk
R k = 1 N ∑ j = 1 N + 1 v ^ k − j v ^ k − j T + H k − 1 P ^ k − 1 H k − 1 T (22) R_k=\frac{1}{N} \sum_{j=1}^{N+1}\hat v_{k-j}\hat v_{k-j}^T+H_{k-1}\hat P_{k-1}H_{k-1}^T\tag{22} Rk=N1j=1N+1v^kjv^kjT+Hk1P^k1Hk1T(22)
这是最简单的计算方法,如果对推导过程不关心的话,可以直接用上述的(22)就可以了。

接下来,详细推导公式(22)如何得到
由公式(17)得到,
∑ j = j 0 k t r { C v j − 1 − C v j − 1 v j v j T C v j − 1 } = 0 (23) \sum_{j=j_0}^{k}tr\{ C_{v_j}^{-1}-C_{v_j}^{-1}v_jv_j^TC_{v_j}^{-1} \}=0 \tag{23} j=j0ktr{Cvj1Cvj1vjvjTCvj1}=0(23)
由卡尔曼滤波可以得到
R k − 1 v k = C v k − 1 v k (24) R_k^{-1}v_k=C_{v_k}^{-1}v_k \tag{24} Rk1vk=Cvk1vk(24)
P k H k T C v k − 1 = P ^ k H k T R k − 1 (25) P_kH_k^TC_{v_k}^{-1}=\hat P_kH_k^TR_k^{-1} \tag{25} PkHkTCvk1=P^kHkTRk1(25)
公式(24)和(25)的推导参见附录A和附录B
将式(24)带入(23)得到
∑ j = j 0 k t r { R j − 1 [ R j C v j − 1 R j − v j v j T ] R j − 1 } = 0 (26) \sum_{j=j_0}^{k}tr\{ R_j^{-1}[R_jC_{v_j}^{-1}R_j-v_jv_j^T]R_j^{-1} \}=0 \tag{26} j=j0ktr{Rj1[RjCvj1RjvjvjT]Rj1}=0(26)
式(25)左乘 H k H_k Hk得到
( C v k − R k ) C v k − 1 = H k P ^ k H k T R k − 1 (27) (C_{v_k}-R_k)C_{v_k}^{-1}=H_k\hat P_kH_k^TR_k^{-1} \tag{27} (CvkRk)Cvk1=HkP^kHkTRk1(27)
式(27)右乘 R k R_k Rk
R k C v k − 1 R k = R k − H k P ^ k H k T (28) R_kC_{v_k}^{-1}R_k=R_k-H_k\hat P_kH_k^T \tag{28} RkCvk1Rk=RkHkP^kHkT(28)
将式(28)带入到(26)中
∑ j = j 0 k t r { R j − 1 [ R j − H j P ^ j H j − v j v j T ] R j − 1 } = 0 (29) \sum_{j=j_0}^{k}tr\{ R_j^{-1}[R_j-H_j\hat P_jH_j-v_jv_j^T]R_j^{-1} \}=0 \tag{29} j=j0ktr{Rj1[RjHjP^jHjvjvjT]Rj1}=0(29)
则式(29)的解为中括号“[]”内等于0,得到
R k = C v k + H k P ^ k H k (30) R_k=C_{v_k}+H_k\hat P_kH_k \tag{30} Rk=Cvk+HkP^kHk(30)
即式(22)。

系统状态噪声协方差矩阵

假设此时 R k R_k Rk已知,且与 α \alpha α无关,由式(16)得到
∑ j = j 0 k t r { H j T [ C v j − 1 − C v j − 1 v j v j T C v j − 1 ] H j } = 0 (31) \sum_{j=j_0}^{k}tr\{ H_j^T[C_{v_j}^{-1}-C_{v_j}^{-1}v_jv_j^TC_{v_j}^{-1}]H_j \}=0 \tag{31} j=j0ktr{HjT[Cvj1Cvj1vjvjTCvj1]Hj}=0(31)
上述变换依据 t r ( A B C D ) = t r ( B C D A ) = t r ( C D A B ) = t r ( D A B C ) tr(ABCD)=tr(BCDA)=tr(CDAB)=tr(DABC) tr(ABCD)=tr(BCDA)=tr(CDAB)=tr(DABC)
由卡尔曼滤波增益矩阵可以得到
H k T C v k − 1 = P k − 1 K k (32) H_k^TC_{v_k}^{-1}=P_k^{-1}K_k \tag{32} HkTCvk1=Pk1Kk(32)
式(32)进行转置
C v k − 1 H k T = K k T P k − 1 (33) C_{v_k}^{-1}H_k^T=K_k^TP_k^{-1} \tag{33} Cvk1HkT=KkTPk1(33)
由于 C v k C_{v_k} Cvk P k P_k Pk均为对称矩阵,他们的逆等于矩阵本身。
将式(31)展开并带入式(32)和(33)
∑ j = j 0 k t r { H j T [ C v j − 1 − C v j − 1 v j v j T C v j − 1 ] H j } = ∑ j = j 0 k t r { H j T C v j − 1 H j − H j T C v j − 1 v j v j T C v j − 1 H j } = ∑ j = j 0 k t r { P j − 1 K j H j − P j − 1 K j v j v j T K j T P j − 1 } = ∑ j = j 0 k t r { P j − 1 ( K j H j P j − K j v j v j T K j T ) P j − 1 } − > ∑ j = j 0 k t r { K j H j P j − K j v j v j T K j T } = 0 (34) \begin{aligned} \sum_{j=j_0}^{k}tr\{ H_j^T[C_{v_j}^{-1}-C_{v_j}^{-1}v_jv_j^TC_{v_j}^{-1}]H_j \} &=\sum_{j=j_0}^{k}tr\{ H_j^TC_{v_j}^{-1}H_j-H_j^TC_{v_j}^{-1}v_jv_j^TC_{v_j}^{-1}H_j \} \\&=\sum_{j=j_0}^{k}tr\{ P_j^{-1}K_jH_j-P_j^{-1}K_jv_jv_j^TK_j^TP_{j}^{-1}\} \\&= \sum_{j=j_0}^{k}tr\{ P_j^{-1}(K_jH_jP_j-K_jv_jv_j^TK_j^T)P_{j}^{-1}\} \\&-> \sum_{j=j_0}^{k}tr\{ K_jH_jP_j-K_jv_jv_j^TK_j^T\} \\&=0 \end{aligned} \tag{34} j=j0ktr{HjT[Cvj1Cvj1vjvjTCvj1]Hj}=j=j0ktr{HjTCvj1HjHjTCvj1vjvjTCvj1Hj}=j=j0ktr{Pj1KjHjPj1KjvjvjTKjTPj1}=j=j0ktr{Pj1(KjHjPjKjvjvjTKjT)Pj1}>j=j0ktr{KjHjPjKjvjvjTKjT}=0(34)
在式(34)中,“->”代表化简,因为 P k P_k Pk中特征值均为正定,所以为了满足最后结果为0,对应矩阵运算的结果应该为0。
从卡尔曼滤波中可以推导出
Δ x k = K k v k (35) \Delta x_k=K_kv_k \tag{35} Δxk=Kkvk(35)
K k H k P k = P k − P ^ k (36) K_kH_kP_k=P_k-\hat P_k \tag{36} KkHkPk=PkP^k(36)
将式(35)和(36)带入简化后的(34)中,
∑ j = j 0 k t r { P j − P ^ j − Δ x j Δ x j T } = 0 (37) \sum_{j=j_0}^{k}tr\{ P_j-\hat P_j-\Delta x_j\Delta x_j^T\}=0\tag{37} j=j0ktr{PjP^jΔxjΔxjT}=0(37)
将公式(4)带入(37)中并经过移项得到Sage自适应Q矩阵
Q k = 1 N ∑ j = j 0 k Δ x j Δ x j T + P ^ k − A k P ^ k − 1 A k (38) Q_k=\frac{1}{N}\sum_{j=j_0}^{k}\Delta x_j\Delta x_j^T+\hat P_k-A_k\hat P_{k-1}A_k \tag{38} Qk=N1j=j0kΔxjΔxjT+P^kAkP^k1Ak(38)

附录A

在附录A中,我们将证明如何得到公式(24)。
可以利用条件极值推导卡尔曼滤波解时,目标函数构建为
Ω ( k ) = v k T R k v k + v x k T P k v x k − 2 λ T ( H k x ^ k − Z k − v k ) = m i n (A1) \Omega(k) =v_k^TR_kv_k+v_{x_k}^TP_{k}v_{x_k}-2\lambda^T (H_k\hat x_k-Z_k-v_k)=min \tag{A1} Ω(k)=vkTRkvk+vxkTPkvxk2λT(Hkx^kZkvk)=min(A1)
其中, v x k = x ^ k − x k v_{x_k}=\hat x_k-x_k vxk=x^kxk v k = H k x ^ k − Z k v_k=H_k\hat x_k-Z_k vk=Hkx^kZk λ \lambda λ为拉格朗日乘数向量
对式(A1)分别对 v k v_k vk x ^ k \hat x_k x^k求导
∂ Ω ( k ) ∂ v k = 2 v k T R k + 2 λ T = 0 (A2) \frac {\partial \Omega(k)}{\partial v_k} =2v_k^TR_k+2\lambda^T=0 \tag{A2} vkΩ(k)=2vkTRk+2λT=0(A2)
∂ Ω ( k ) ∂ x ^ k = 2 v x k T P k − 2 λ T H k = 0 (A3) \frac {\partial \Omega(k)}{\partial \hat x_k} =2v_{x_k}^TP_{k}-2\lambda^TH_k=0 \tag{A3} x^kΩ(k)=2vxkTPk2λTHk=0(A3)
由式(A2)得到
v k = − R k − 1 λ (A4) v_k=-R_k^{-1}\lambda \tag{A4} vk=Rk1λ(A4)
由式(A3)推导
v x k = P k − 1 H k T λ (A5) v_{x_k}=P_{k}^{-1}H_k^T\lambda \tag{A5} vxk=Pk1HkTλ(A5)
分别将式(A4)带入 v k = H k x ^ k − z k v_k=H_k\hat x_k-z_k vk=Hkx^kzk,(A5)带入 v x k = x ^ k − x k v_{x_k}=\hat x_k-x_k vxk=x^kxk得到
− R k − 1 λ = H k x ^ k − z k (A6) -R_k^{-1}\lambda=H_k\hat x_k-z_k \tag{A6} Rk1λ=Hkx^kzk(A6)
P k − 1 H k T λ = x ^ k − x k (A7) P_{k}^{-1}H_k^T\lambda=\hat x_k-x_k \tag{A7} Pk1HkTλ=x^kxk(A7)
式(A7)同时左乘矩阵 H k H_k Hk
H k P k − 1 H k T λ = H k x ^ k − H k x k (A8) H_kP_{k}^{-1}H_k^T\lambda=H_k\hat x_k-H_kx_k \tag{A8} HkPk1HkTλ=Hkx^kHkxk(A8)
式(A8)减去式(A6)得到
λ = ( H k P k − 1 H k T + R k − 1 ) − 1 ( z k − H k x k ) (A9) \lambda=(H_kP_k^{-1}H_k^T+R_k^{-1})^{-1}(z_k-H_kx_k) \tag{A9} λ=(HkPk1HkT+Rk1)1(zkHkxk)(A9)
根据式(A4)和(A9)有
λ = − ( C v k ) v k = − R k v k (A10) \lambda=-(C_{v_k})v_k=-R_kv_k \tag{A10} λ=(Cvk)vk=Rkvk(A10)
通过式(A10),(24)证毕。

附录B

在本节中,主要证明公式(25)。首先根据卡尔曼滤波公式(5)和(7),将(5)代入(7)
P ^ k = P k − P k H k T ( H k P k H k T + R k ) − 1 H k P k (B1) \hat P_k=P_k-P_kH_k^T(H_kP_kH_k^T+R_k)^{-1}H_kP_k \tag{B1} P^k=PkPkHkT(HkPkHkT+Rk)1HkPk(B1)
由矩阵求逆引理
( A + B C D ) − 1 = A − 1 − A − 1 B ( C − 1 + D A − 1 B ) − 1 D A − 1 (B2) (A+BCD)^{-1}=A^{-1}-A^{-1}B(C^{-1}+DA^{-1}B)^{-1}DA^{-1} \tag{B2} (A+BCD)1=A1A1B(C1+DA1B)1DA1(B2)
将(B1)和(B2)对照可将式(B1)简化为
P ^ k = ( P k − 1 + H k T R k − 1 H k ) − 1 (B3) \hat P_k=(P_k^{-1}+H_k^TR_k^{-1}H_k)^{-1} \tag{B3} P^k=(Pk1+HkTRk1Hk)1(B3)
根据公式(5)
K k = P k H k T ( H k P k H k T + R k ) − 1 = [ ( H k P k H k T + R k ) ( H k T ) − 1 P k − 1 ] − 1 = [ H k + R k ( H k T ) − 1 P k − 1 ] − 1 = [ R k ( H k T ) − 1 ( H k T R k − 1 H k + P k − 1 ) ] − 1 = [ H k T R k − 1 H k + P k − 1 ] − 1 H k T R k − 1 (B4) \begin{aligned} K_k&=P_kH_k^T(H_kP_kH_k^T+R_k)^{-1} \\&=[(H_kP_kH_k^T+R_k)(H_k^T)^{-1}P_k^{-1}]^{-1} \\&=[H_k+R_k(H_k^T)^{-1}P_k^{-1}]^{-1} \\&=[R_k(H_k^T)^{-1}(H_k^TR_k^{-1}H_k+P_k^{-1})]^{-1} \\&=[H_k^TR_k^{-1}H_k+P_k^{-1}]^{-1}H_k^TR_k^{-1} \end{aligned}\tag{B4} Kk=PkHkT(HkPkHkT+Rk)1=[(HkPkHkT+Rk)(HkT)1Pk1]1=[Hk+Rk(HkT)1Pk1]1=[Rk(HkT)1(HkTRk1Hk+Pk1)]1=[HkTRk1Hk+Pk1]1HkTRk1(B4)
将(B3)代入(B4)得
K k = P ^ k H k T R k − 1 (B5) K_k=\hat P_kH_k^TR_k^{-1}\tag{B5} Kk=P^kHkTRk1(B5)
此外,参考公式(5)和公式(19)
K k = P k H k T C v k − 1 (B6) K_k=P_kH_k^TC_{v_k}^{-1}\tag{B6} Kk=PkHkTCvk1(B6)
通过式(B5)和(B6),公式(25)证毕。

参考文献

[1] 杨元喜. 自适应动态导航定位(第二版).
[2] Mohamed A., Schwarz K. Adaptive Kalman Filtering for INS/GPS.
[3] 025卡尔曼滤波中滤波增益与协方差阵的等价形式. https://blog.csdn.net/Pro2015/article/details/82908148

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值