1.连续周期信号(FS):
将一个连续周期信号用无数个复指数信号的线性组合来表示(指数形式),或者说表示成无数个正弦与余弦信号的叠加(三角函数形式)。用傅立叶级数的系数来表示频谱,频谱是离散非周期的。
对比 离散周期信号(DFS):
道理同上,得到离散周期性的频谱。
2.连续非周期信号(FT):
看作是连续周期信号,周期趋于无穷大的情况。相邻谱线的间隔变得无穷小,频谱变得连续。在这种情况下,引入频谱密度函数。
对比 离散非周期信号:
1)DTFT:相当于对连续非周期信号进行等间隔采样,在频域则进行了周期延拓,故得到了连续周期性的频谱。
2)DFT:为了得到有限长度的离散频谱,则要求时域信号是离散周期性的,并只取一个周期,即也限制时域信号的长度。
3.周期信号的傅立叶变换:
周期信号不满足绝对可积的条件,但在允许冲击函数存在,并认为它有意义的前提下,绝对可积条件也就成了不必要的限制,也就有周期信号的傅立叶变换。
把周期信号和非周期信号的分析方法统一起来,使傅立叶变换得到广泛应用。