都2025年了,谁还不会下一代测序(NGS)数据质控(四)

群里有新朋友对NGS测序数据的质控还不熟悉,从今天开始我们就介绍几款常用的质控工具。总的来说,质控工具可以分为两类:可以自动识别测序接头的,和不可以自动识别接头的。今天,终于可以做一个总结了。

常用质控软件:能自动识别接头的,推荐使用:

  • • fastp

  • • Trim Galore

不能够自动识别接头的,推荐使用:

  • • Trimmomatic

  • • Cutadapt

重要通知:由于时间精力有限,我们只开通了一个微信群和一个QQ群,满员后可能不再新设任何群聊,现在还有少量免费名额:

  • 微信群:已满200+人,请加个人微信 usegalaxy,拉入群聊
  • QQ群:925694514

Cutadapt简介

Cutadapt 是一个用于处理各种测序数据(如Illumina、Ion Torrent等)的 轻量级、强大的开源Python工具,主要用于从序列数据中修剪接头序列(adapters)、低质量序列以及短序列等。简而言之,Cutadapt就是测序数据中的“清洁工”,帮助我们净化原始数据,为后续的分析步骤做好准备。

功能特点

1. 多种匹配模式

可自定义匹配模式,适应不同实验设计和数据类型。

  • • 精确匹配:如果读取序列包含指定的adapter序列,Cutadapt会将其完全移除。

  • • 模糊匹配:允许部分位点不匹配,通过设置最小匹配长度和误差率来控制,这种灵活性非常适合处理那些可能存在微小变异的接头序列。

  • • 质量控制:基于每个碱基的质量分数进行自动剪切,保留高质量的序列部分,进一步提升数据质量。

2. 短序列过滤

有时候测序数据中会有一些非常短的序列,这些序列可能没有实际的研究价值。Cutadapt 可以帮你过滤掉这些短序列。

4. 广泛的数据格式支持

直接处理Fastq和Fastaq.gz格式的文件,这些格式是高通量测序数据的常用存储格式。无需额外的格式转换步骤,直接上手处理。

5. 灵活性

Cutadapt 提供了丰富的选项,你可以根据自己的需求进行调整,比如设置不同的修剪参数、过滤条件等。

2. 多线程支持

Cutadapt支持多线程,能够利用多核处理器并行处理数据,极大地提高了处理速度。这对于处理大规模测序数据来说,无疑是一个巨大的优势。

应用场景

  • • 基因组测序数据分析:在Illumina高通量测序中,移除特定的接头序列,使后续的比对或组装更准确。

  • • 转录组学研究:RNA-seq数据的预处理,去除rRNA、poly(A)尾部以及其他不必要的序列。

  • • 宏基因组学分析:对于环境样本的测序数据,去除可能的PCR接头和低质量序列。

  • • 单细胞测序:在单细胞RNA-seq中,接头序列去除也是必要的预处理步骤之一。

总结

Cutadapt是一款功能强大、灵活易用的高通量测序数据处理工具。它不仅能够高效去除接头序列,还支持多种匹配模式和质量控制选项,满足不同实验需求。如果你觉得手动运行 Cutadapt 有些麻烦,那么可以在 Galaxy 生信云平台(usegalaxy.cn)上快速运行Cutadapt,Galaxy自动在后台处理数据,并并生成处理后的文件供你下载。

92ab393ff59f6971eb97ba754d39b343.png

推荐阅读

一键分析10X单细胞数据点击图片跳转

b3eb3d332e947db59d2254b8b7793a82.jpeg

一键分析Bulk转录组数据点击图片跳转

32b6879783bdf28dc4982c67730a1160.jpeg

简说基因 | 精选文章合辑点击图片跳转742418764c80a7ca5d9745166984421e.jpeg


生信平台

Galaxy生信云平台(UseGalaxy.cn)致力于降低生信分析门槛,让无专业背景的用户也能轻松分析数据。

• 界面化操作与强大的计算资源。

• 成百上千工具和流程免费使用。

• 丰富的可视化和交互分析工具。

• 强大的数据共享以及协作能力。

联系方式

1f76e1e7f83bfdfdc445d74ea480f9e4.png

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值