群里有新朋友对NGS测序数据的质控还不熟悉,从今天开始我们就介绍几款常用的质控工具。总的来说,质控工具可以分为两类:可以自动识别测序接头的,和不可以自动识别接头的。今天,终于可以做一个总结了。
常用质控软件:能自动识别接头的,推荐使用:
• fastp
• Trim Galore
不能够自动识别接头的,推荐使用:
• Trimmomatic
• Cutadapt
重要通知:由于时间精力有限,我们只开通了一个微信群和一个QQ群,满员后可能不再新设任何群聊,现在还有少量免费名额:
- 微信群:已满200+人,请加个人微信 usegalaxy,拉入群聊
- QQ群:925694514
Cutadapt简介
Cutadapt 是一个用于处理各种测序数据(如Illumina、Ion Torrent等)的 轻量级、强大的开源Python工具,主要用于从序列数据中修剪接头序列(adapters)、低质量序列以及短序列等。简而言之,Cutadapt就是测序数据中的“清洁工”,帮助我们净化原始数据,为后续的分析步骤做好准备。
功能特点
1. 多种匹配模式
可自定义匹配模式,适应不同实验设计和数据类型。
• 精确匹配:如果读取序列包含指定的adapter序列,Cutadapt会将其完全移除。
• 模糊匹配:允许部分位点不匹配,通过设置最小匹配长度和误差率来控制,这种灵活性非常适合处理那些可能存在微小变异的接头序列。
• 质量控制:基于每个碱基的质量分数进行自动剪切,保留高质量的序列部分,进一步提升数据质量。
2. 短序列过滤
有时候测序数据中会有一些非常短的序列,这些序列可能没有实际的研究价值。Cutadapt 可以帮你过滤掉这些短序列。
4. 广泛的数据格式支持
直接处理Fastq和Fastaq.gz格式的文件,这些格式是高通量测序数据的常用存储格式。无需额外的格式转换步骤,直接上手处理。
5. 灵活性
Cutadapt 提供了丰富的选项,你可以根据自己的需求进行调整,比如设置不同的修剪参数、过滤条件等。
2. 多线程支持
Cutadapt支持多线程,能够利用多核处理器并行处理数据,极大地提高了处理速度。这对于处理大规模测序数据来说,无疑是一个巨大的优势。
应用场景
• 基因组测序数据分析:在Illumina高通量测序中,移除特定的接头序列,使后续的比对或组装更准确。
• 转录组学研究:RNA-seq数据的预处理,去除rRNA、poly(A)尾部以及其他不必要的序列。
• 宏基因组学分析:对于环境样本的测序数据,去除可能的PCR接头和低质量序列。
• 单细胞测序:在单细胞RNA-seq中,接头序列去除也是必要的预处理步骤之一。
总结
Cutadapt是一款功能强大、灵活易用的高通量测序数据处理工具。它不仅能够高效去除接头序列,还支持多种匹配模式和质量控制选项,满足不同实验需求。如果你觉得手动运行 Cutadapt 有些麻烦,那么可以在 Galaxy 生信云平台(usegalaxy.cn)上快速运行Cutadapt,Galaxy自动在后台处理数据,并并生成处理后的文件供你下载。
推荐阅读
一键分析10X单细胞数据(点击图片跳转)
一键分析Bulk转录组数据(点击图片跳转)
生信平台
Galaxy生信云平台(UseGalaxy.cn)致力于降低生信分析门槛,让无专业背景的用户也能轻松分析数据。
• 界面化操作与强大的计算资源。
• 成百上千工具和流程免费使用。
• 丰富的可视化和交互分析工具。
• 强大的数据共享以及协作能力。
联系方式