本栏目旨在为读者介绍量化交易的基本概念、策略设计以及实施过程。从最基本的技术分析和数据挖掘,到如何构建高效的交易模型,我们将深入探讨量化交易的各个方面,帮助读者理解并掌握这一新兴的交易方式。
无论你是刚刚接触量化交易的初学者,还是有一定经验的交易员,本书都将为你提供切实可行的指导和灵感,帮助你在量化交易的道路上走得更远,走得更稳。
量化交易,不仅仅是一种交易方式,更是一种对未来的投资方式。
闲话少说,系统构建以原油期货数据为训练样本(因为数据容易获取),采用lstm 基于时间顺序训练模型,编程语言为python、数据采集使用mql4。接下来,我们将会经历以下步骤:
1. 数据采集
- MQL4编程:你将使用MQL4进行数据采集,MQL4可以非常方便地从MetaTrader 4平台提取原油期货数据。你可以使用
iClose
,iOpen
,iHigh
,iLow
等函数获取历史数据,设置时间框架(如5分钟、15分钟等)。 - 数据存储:将数据按时间戳(通常使用Unix时间戳)进行存储,并确保数据在采集过程中准确、连续。为了后续处理,CSV格式或数据库格式(如SQLite)比较常用。
- 确保数据完整性:在采集数据时,确保考虑到任何网络问题或数据缺失,避免不完整的时间序列影响模型训练。
2. 数据清洗
- 去除异常值:市场数据中可能会出现异常点(例如由于系统故障或网络问题引起的跳跃),这些数据需要进行过滤。
- 填补缺失数据:如果存在数据缺失(如某些时间点没有价格信息),可以使用插值法或者最近邻法来填补缺失值。
- 数据标准化:LSTM模型对输入数据的尺度非常敏感,因此建议对原始数据进行归一化或标准化处理(例如Min-Max标准化或者Z-Score标准化)。
- 标记数据:根据你提到的训练数据集(5分钟、15分钟等)进行标签生成,可能是通过分类(如上涨或下跌)或者回归(如预测下一个价格)进行标注。为模型提供明确的目标变量。
- 可以使用
keras.layers.LSTM
来构建模型,并使用mean_squared_error
等损失函数来训练。 -
超参数调整:对于LSTM模型,学习率、层数、隐藏单元数等超参数都需要调整。可以通过交叉验证或者网格搜索来优化这些参数。
3. 模型训练
-
LSTM模型:LSTM非常适合时间序列预测,因为它能有效捕捉长期依赖关系。在这里,你可以使用
TensorFlow
或Keras
来构建LSTM模型。模型架构的选择可以包含:- 输入层:对原始数据进行处理(如OHLC数据)。
- LSTM层:可以尝试多个LSTM层堆叠,以增强模型的表达能力。
- Dropout层:防止过拟合。
- 输出层:可以是回归任务(预测价格)或者分类任务(上涨/下跌)。
4. 仿真调试
- Backtrader回测:在模型训练之后,使用
Backtrader
进行回测非常重要。它能够模拟真实的交易环境,帮助你评估策略的有效性。在回测过程中,你可以设置不同的交易策略,如基于LSTM的买入卖出信号。 - 仿真环境:建议在仿真中模拟真实的市场环境,包括手续费、滑点等因素,这样能更好地评估模型在真实市场中的表现。
5. 真机运行
- 实时数据接入:将模型部署到实际环境中时,需要确保能够实时接入市场数据。你可以设置定时任务来获取最新数据并通过LSTM进行实时预测。
- 交易执行:当模型给出买入或卖出信号时,交易策略需要通过API与交易平台(如MetaTrader 4)进行对接,自动下单。
数据集扩充
- 多时间框架:你提到的不同时间周期(如5分钟、15分钟等)可以让模型从多角度学习市场行为。可以尝试通过数据增强(例如数据切分、时间平移)来扩充数据集,增加模型的泛化能力。
预计在数据清洗标记部分可能会使用较多的时间。因为我们将要采集5、15、30、60、240分钟的数据、并进行标记。要达到真实环境运行的标准,需要不要的扩充训练数据集。第三部分在tensorflow上运行,第4部分将会使用Backtrader进行回测。
这是一个很有前景的项目,但也充满了挑战。在每个阶段,建议尽早进行验证和调试,确保在后续步骤中能够顺利进行,让我们一起奋斗吧