MVKE:Mixture of Virtual-Kernel Experts for Multi-Objective User Profile Modeling
MVKE论文中是给用户打tag标记,构建用户画像。使用的也是经典的双塔模型,另外在双塔的基础上面叠加了ctr和cvr的多个目标。但是论文最大的创新点是在用户塔做了有意思的处理,通过类似MMoE的方式引入多个Experts,同时引入一组全局兴趣向量(类似于一级类目的用户兴趣,只不过隐式的,和实际的一级类目没有明确的一对一关系),通过attention机制学习用户每个特征field和全局兴趣向量的关系,然后经过expert网络变换后输出,多个expert输出的向量经过一个gate网络,gate网络也是通过attention机制计算兴趣向量和tag-embedding的相关性,根据这个相关性结果对多个expert的输出结果加权得到最终的user-embedding。
基础结构还是双塔
假设用户特征域分为
m
m
m个域,双塔模型可以表示为如下,
E
u
i
E_{u_i}
Eui表示用户Embedding,
E
T
E_T
ET表示物料Embedding,论文中是tag。用户塔表示为函数
f
u
(
⋅
)
f_u( \cdot )
fu(⋅),物料塔表示为
g
i
(
⋅
)
g_i( \cdot)
gi(⋅),对于用户和物料的pair对<
u
i
,
a
i
u_i,a_i
ui,ai>,其中
θ
u
\theta_u
θu和
θ
a
\theta_a
θa分别表示用户塔和物料塔的网络参数。
E
u
i
=
f
u
i
(
u
i
1
,
u
i
2
,
.
.
,
u
i
m
;
θ
u
)
E_{u_i} = f_{u_i}( u^1_i, u^2_i, .., u^m_i; \theta_u )
Eui=fui(ui1,ui2,..,uim;θu)
E T i = E a i = g i ( a i ; θ a ) E_{T_i} = E_{a_i} = g_i(a_i; \theta_a) ETi=Eai=gi(ai;θa)
使用bce-loss计算
p
i
=
σ
(
c
o
s
(
E
u
i
,
E
T
I
)
)
p_i = \sigma(cos(E_{u_i}, E_{T_I}))
pi=σ(cos(Eui,ETI))
L
=
L
B
C
E
(
y
,
f
u
(
u
;
θ
u
)
⋅
g
t
(
a
;
θ
i
)
)
=
∑
i
(
y
i
log
(
p
i
)
+
(
1
−
y
i
)
log
(
1
−
p
i
)
)
L = L_{BCE}(y,f_u(u;\theta_u) \cdot g_t(a;\theta_i)) = \sum_i(y_i \log(p_i) + (1-y_i)\log(1-p_i))
L=LBCE(y,fu(u;θu)⋅gt(a;θi))=i∑(yilog(pi)+(1−yi)log(1−pi))
对于单目标任务,MVKE结构如下
逐个结构来看
Virtual-Kernal Experts(VKE)其实就是MMoE多目标结构中的Expert,这个Expert的输入有2类,一个是用户的各个特征域的Embedding,另外一个是全局兴趣向量(论文称为Virtual Kernel,取名高大上),通过attention机制将特征域的Embedding进行加权后concat后输入给网络
f
u
(
⋅
)
f_u(\cdot)
fu(⋅),这里Key、Value都是特征域Embedding,Query是全局兴趣向量(即论文中称为Virtual-Kernal )
Q
=
σ
(
W
Q
T
W
V
K
k
+
b
Q
)
Q = \sigma(W^T_QW^k_{VK} + \mathbf b_Q)
Q=σ(WQTWVKk+bQ)
K
=
σ
(
W
K
T
E
u
f
i
+
b
K
)
K = \sigma(W^T_K E_{uf_i}+ \mathbf b_K)
K=σ(WKTEufi+bK)
V
=
σ
(
W
V
T
E
u
f
i
+
b
V
)
V = \sigma(W^T_V E_{uf_i}+ \mathbf b_V)
V=σ(WVTEufi+bV)
attention结果计算如下:
C
V
K
E
k
=
s
o
f
t
m
a
x
(
Q
K
T
d
k
)
∗
V
C^k_{VKE} = softmax(\frac {QK^T} {\sqrt d_k}) * V
CVKEk=softmax(dkQKT)∗V
根据各个特征域加权concat后,输入到网络
f
u
k
(
⋅
)
f^k_u(\cdot)
fuk(⋅)中,得到VKE的输出
E
u
i
k
=
f
u
k
(
C
V
K
E
k
)
E^k_{u_i} = f^k_u(C^k_{VKE})
Euik=fuk(CVKEk)
每个Expert输出一个Embedding,这些Embedding经过一个gate网络。这个gate网络称为Virtual-Kernal Gate(VKG),VKG也是由attention网络组成,输入的Key是兴趣向量(Virtual-Kernal ),Value是各个专家(VKE)的输出
E
u
i
k
E^k_{u_i}
Euik,Query是tag Embedding。attention权重计算由非线性映射
Q
(
E
T
i
)
Q(E_{T_i})
Q(ETi)、
K
(
W
V
K
k
)
K(W^k_{VK})
K(WVKk)计算得到。最终的用户向量
E
u
i
E_{u_i}
Eui表示如下
E
u
i
=
∑
k
=
1
K
s
o
f
t
m
a
x
(
Q
K
T
d
k
)
∗
V
E_{u_i} = \sum_{k=1}^K softmax (\frac {QK^T} {\sqrt d_k}) * V
Eui=k=1∑Ksoftmax(dkQKT)∗V
线上infer方式
每个专家都有各自的兴趣向量(Virtual-Kernal),K个专家就有K个全局的兴趣向量Virtual-Kernal)。模型训练完后,这K个全局的兴趣向量就ready了,在得到最终用户向量
E
u
i
E_{u_i}
Eui之前,会得到K个专家网络输出的用户向量
E
u
i
k
E^k_{u_i}
Euik,这K个用户向量是直接产出的,不依赖item向量,但是这K个用户向量经过VK Gate时用到了item向量,在attention权重计算过程中,由于Query是item向量,Key是K个兴趣向量(Virtual-Kernal )
w
=
s
o
f
t
m
a
x
(
Q
K
T
d
k
)
\mathbf w= softmax (\frac {QK^T} {\sqrt d_k})
w=softmax(dkQKT)
w
=
[
w
1
,
w
2
,
.
.
.
,
w
K
]
T
\mathbf w = [w_1, w_2, ..., w_K]^T
w=[w1,w2,...,wK]T
导出所有item向量的同时,需要计算item向量和这K个全局向量向量的相关性,作为对应K个用户向量的权重,也就是离线需要保存item向量以及
[
w
1
,
w
2
,
.
.
.
,
w
K
]
[w_1,w_2, ...,w_K]
[w1,w2,...,wK],线上infer的时候,用户塔输出K个用户向量
E
u
i
k
E^k_{u_i}
Euik,然后根据这些权重计算最终的用户向量
E
u
i
=
∑
k
=
1
K
w
k
E
u
i
k
E_{u_i} = \sum_{k=1}^K w_k E^k_{u_i}
Eui=k=1∑KwkEuik
然后计算用户向量
E
u
i
E_{u_i}
Eui和item向量
E
v
i
E_{v_i}
Evi的相关性,取topK
上面是用于粗排的方式,怎么用于召回阶段呢。召回会提前把item的embedding灌入ANN检索库中,infer的时候没有进一步的计算步骤,直接拿user embedding去检索。
上面K个用户向量
E
u
i
k
E^k_{u_i}
Euik聚合成最终的用户向量
E
u
i
E_{u_i}
Eui和item向量
E
v
i
E_{v_i}
Evi的点积可以拆分如下
E u i ⋅ E v i = ( ∑ k = 1 K w k E u i k ) ⋅ E v i = ∑ k = 1 K w k ( E u i k ⋅ E v i ) E_{u_i} \cdot E_{v_i} =(\sum_{k=1}^K w_k E^k_{u_i}) \cdot E_{v_i} = \sum_{k=1}^Kw_k (E^k_{u_i} \cdot E_{v_i}) Eui⋅Evi=(k=1∑KwkEuik)⋅Evi=k=1∑Kwk(Euik⋅Evi)
这其实就是另外两个向量的内积形式
E
u
i
c
=
c
o
n
c
a
t
(
E
u
i
1
,
E
u
i
2
,
.
.
.
,
E
u
i
K
)
E^{c}_{u_i} = concat(E^1_{u_i},E^2_{u_i},...,E^K_{u_i})
Euic=concat(Eui1,Eui2,...,EuiK)
E
v
i
c
=
c
o
n
c
a
t
(
w
1
E
v
i
,
w
2
E
v
i
,
.
.
.
,
w
K
E
v
i
)
E^{c}_{v_i} = concat(w_1 E_{v_i},w_2 E_{v_i},...,w_K E_{v_i})
Evic=concat(w1Evi,w2Evi,...,wKEvi)
E u i ⋅ E v i = ( ∑ k = 1 K w k E u i k ) ⋅ E v i = ∑ k = 1 K w k ( E u i k ⋅ E v i ) = E u i c ⋅ E v i c E_{u_i} \cdot E_{v_i} =(\sum_{k=1}^K w_k E^k_{u_i}) \cdot E_{v_i} = \sum_{k=1}^Kw_k (E^k_{u_i} \cdot E_{v_i}) = E^c_{u_i} \cdot E^c_{v_i} Eui⋅Evi=(k=1∑KwkEuik)⋅Evi=k=1∑Kwk(Euik⋅Evi)=Euic⋅Evic
因此离线只需要将item向量 E v i c E^c_{v_i} Evic灌入ANN检索库就可以使用,只是向量长度是原来的K倍,这里K是超参数,需要调整验证。
点评
从结构上面看,用户隐式兴趣向量(Virtual-Kernal )起着重要作用,在专家网络VKE和门控网络VKG都有应用,论文中说这些兴趣向量就像用户和tag之间的桥梁,一桥架起双塔,就像下图。这个桥梁联通了用户和物料,在Expert中衡量用户的特征,在Gate网络中又被物料Embedding约束,可以说是一种间接的交叉,这在双塔模型中算是比较新颖的做法。
对于多任务模型,结构如下
多任务结构引用了PLE的做法,将expert分为两大类,一类是共享的expert,一类是任务相关的expert,在论文中具体是Task-ctr、Task-cvr两类任务相关的expert
也就是由
K
c
t
r
+
K
s
h
a
r
e
K_{ctr} + K_{share}
Kctr+Kshare 个expert用于ctr任务(作为ctr-vk-Gate网络的输入),
K
c
v
r
+
K
s
h
a
r
e
K_{cvr} + K_{share}
Kcvr+Kshare 个任务用于cvr任务(作为cvr-vk-Gate的输入)。
在实际中,Gate网络不一定采用论文中weighted sum的方式,也可以尝试attention weight最大的向量作为最终的用户向量
最后loss相加
MVKE最开始乍看和MIND/ComiRec模型比较类似,MIND/ComiRec在通过Capsule/Self-Attention方式得到K个用户兴趣向量后,最后的用户兴趣向量是通过label-aware attention的方式得到,和MVKE最后用户向量一样。不过不同的是,生成用户K个兴趣向量的方式不一样,MVKE是MMoE的多个Expert方式,MIND/ComiRec是胶囊网络或者Self-Attention方式,不过没有本质区别。个人觉得区别较大的地方是MVKE通过引入了多个隐式兴趣向量作为用户和物料的桥梁,在模型较早期就实现了双塔的“交叉”,这一点比较独特。
优化空间
-
当前的全局兴趣向量(Virtual-Kernal )其实比较简单,可以在这个基础上面进行复杂化,因为兴趣向量是全局的,训练好好之后和user和item无依赖,因此我们可以将交叉特征在训练阶段引入到VK向量中,得到效果更好的全局向量表征。
-
可以对item塔也使用相同的结果,增加VKE和VKG,加强item侧的学习能力