GWO-LSTM多输入分类预测|灰狼算法-双向长短期神经网络|Matlab

目录

一、程序及算法内容介绍:

基本内容:

亮点与优势:

 二、实际运行效果:

三、算法介绍:

四、完整程序下载:


一、程序及算法内容介绍:

基本内容:

  • 本代码基于Matlab平台编译,将GWO(灰狼群算法)与Bi-LSTM(双向长短期记忆神经网络)结合,进行多输入数据分类预测

  • 输入训练的数据包含12个特征1个响应值,即通过12个输入值预测1个输出值(多变量分类预测,个数可自行指定)

  • 归一化训练数据,提升网络泛化性

  • 通过GWO算法优化Bi-LSTM网络的学习率、神经元个数参数,记录下最优的网络参数

  • 迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况

  • 自动输出多种多样的的误差评价指标,自动输出大量实验效果图片

亮点与优势:

  • 注释详细,几乎每一关键行都有注释说明,适合小白起步学习

  • 直接运行Main函数即可看到所有结果,使用便捷

  • 编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码

  • 所有数据均采用Excel格式输入,替换数据方便,适合懒人选手

  • 出图详细、丰富、美观,可直观查看运行效果

  • 附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明

 二、实际运行效果:

三、算法介绍:

灰狼优化算法(Grey Wolf Optimization, GWO)是一种群智能优化算法,由澳大利亚格里菲斯大学学者Mirjalili等人于2014年提出。该算法的灵感来源于灰狼群体的捕食行为,模拟了灰狼在捕食过程中的领导等级和协作机制。在灰狼优化算法中,灰狼群体包括一只α狼(领导者)、一只β狼(副领导者)、一只δ狼(第三高级狼)和其他普通狼。这些狼根据其在搜索空间中的位置进行搜索,相互协作以找到最优解。α狼通常代表当前最优解,β狼和δ狼则协助其他狼进行搜索。灰狼优化算法通过模拟狼群的协作和竞争行为,实现了一种平衡探索和开发的机制。这种机制在全局搜索和局部搜索之间取得了良好的平衡,使算法能够快速收敛并找到较优解。GWO算法在解决优化问题时表现出色,尤其在连续优化问题和多目标优化问题中具有很好的性能。它已被广泛应用于各种领域,如神经网络训练、调度问题、控制问题和电力系统优化等。

四、完整程序下载:

1.版本:matlab2014/2019a/2021a,内含运行结果,不会运行可私信 2.领域:智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等种领域的Matlab仿真,更内容可点击博主头像 3.内容:标题所示,对于介绍可点击主页搜索博客 4.适合人群:本科,硕士等教研学习使用 5.博客介绍:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可si信 %% 开发者:Matlab科研助手 %% 更咨询关注天天Matlab微信公众号 ### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测分类清单 **2.1 bp预测分类** **2.2 lssvm预测分类** **2.3 svm预测分类** **2.4 cnn预测分类** ##### 2.5 ELM预测分类 ##### 2.6 KELM预测分类 **2.7 ELMAN预测分类** ##### 2.8 LSTM预测分类 **2.9 RBF预测分类** ##### 2.10 DBN预测分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测分类 ##### 2.13 BIlstm预测分类 ##### 2.14 宽度学习预测分类 ##### 2.15 模糊小波神经网络预测分类 ##### 2.16 GRU预测分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值