目录
一、程序及算法内容介绍:
基本内容:
-
本代码基于Matlab平台编译,将GWO(灰狼群算法)与Bi-LSTM(双向长短期记忆神经网络)结合,进行多输入数据分类预测
-
输入训练的数据包含12个特征,1个响应值,即通过12个输入值预测1个输出值(多变量分类预测,个数可自行指定)
-
归一化训练数据,提升网络泛化性
-
通过GWO算法优化Bi-LSTM网络的学习率、神经元个数参数,记录下最优的网络参数
-
迭代计算过程中,自动显示优化进度条,实时查看程序运行进展情况
-
自动输出多种多样的的误差评价指标,自动输出大量实验效果图片
亮点与优势:
-
注释详细,几乎每一关键行都有注释说明,适合小白起步学习
-
直接运行Main函数即可看到所有结果,使用便捷
-
编程习惯良好,程序主体标准化,逻辑清晰,方便阅读代码
-
所有数据均采用Excel格式输入,替换数据方便,适合懒人选手
-
出图详细、丰富、美观,可直观查看运行效果
-
附带详细的说明文档(下图),其内容包括:算法原理+使用方法说明
二、实际运行效果:
三、算法介绍:
灰狼优化算法(Grey Wolf Optimization, GWO)是一种群智能优化算法,由澳大利亚格里菲斯大学学者Mirjalili等人于2014年提出。该算法的灵感来源于灰狼群体的捕食行为,模拟了灰狼在捕食过程中的领导等级和协作机制。在灰狼优化算法中,灰狼群体包括一只α狼(领导者)、一只β狼(副领导者)、一只δ狼(第三高级狼)和其他普通狼。这些狼根据其在搜索空间中的位置进行搜索,相互协作以找到最优解。α狼通常代表当前最优解,β狼和δ狼则协助其他狼进行搜索。灰狼优化算法通过模拟狼群的协作和竞争行为,实现了一种平衡探索和开发的机制。这种机制在全局搜索和局部搜索之间取得了良好的平衡,使算法能够快速收敛并找到较优解。GWO算法在解决优化问题时表现出色,尤其在连续优化问题和多目标优化问题中具有很好的性能。它已被广泛应用于各种领域,如神经网络训练、调度问题、控制问题和电力系统优化等。