ORB-SLAM的概念(零基础搞懂)

首先写ORB中的概念

一、前端提取

包括像素点选取和匹配两部分:

1.像素点选取:主要是ORB特征,看看这篇文章就够了:https://blog.csdn.net/maweifei/article/details/62887831   ORB主要有两个概念,角点,还有就是Moment,Moment类似于重心的概念用来表示特征点的方向,在旋转能快速Match。另外特征点确定好后用BREAF确定来描述,BREAF在特征点周围使用两维高斯分布乘以图像像素值。实际就是BREAF和Moment来综合描述。           像素点选取好后,一般通过跟踪的方法加速图像间特征点选取。     ORB特征匹配,主要是像素点相似性的计算。ORB特征匹配。                                                                                              

很显然,基于特征点的目标跟踪算法和1),2)两个步骤有关。特征点可以是Harris角点(见我的另外一篇博文),也可以是边缘点等等,而估计下一帧位置的方法也有不少,比如这里要讲的光流法。

对于双目相机,因为两个摄像机距离已知,利用两个摄像机的图像可完成特征点深度测量。对于单目摄像机来说,一般需用IMU来配合检测摄像机移距离,实现两幅图像中像素的三角测量;或者摄像机外参数固定,在特殊场景下,也能完成测量。

2.像素点匹配:

主要是BREAF等编码,也能按照SIFT编码,主要是寻找特征点

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值