人工智能/机器学习基础知识——岭回归、LASSO

  • 岭回归

    Ridge Regression

    min ⁡ w ∑ i = 1 m ( y i − w T x i ) 2 + λ ∥ w ∥ 2 2 \min _{\boldsymbol{w}} \sum_{i=1}^{m}\left(y_{i}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{i}\right)^{2}+\lambda\|\boldsymbol{w}\|_{2}^{2} wmini=1m(yiwTxi)2+λw22

  • LASSO

    Least Absolute Shrinkage and Selection Operator

    min ⁡ w ∑ i = 1 m ( y i − w T x i ) 2 + λ ∥ w ∥ 1 \min _{\boldsymbol{w}} \sum_{i=1}^{m}\left(y_{i}-\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_{i}\right)^{2}+\lambda\|\boldsymbol{w}\|_{1} wmini=1m(yiwTxi)2+λw1

  • L 1 L_1 L1 L 2 L_2 L2范数正则化都有助于降低过拟合风险,但 L 1 L_1 L1 L 2 L_2 L2更容易获得稀疏解(Sparse),即它求得的 w w w会有更少的非零分量

    关于正则化与 L 1 L_1 L1 L 2 L_2 L2范数的理解

    • w w w取得稀疏解意味着初始的 d d d个特征中仅有对应着 w w w的非零分量的特征才会出现在最终模型中,所以,求解 L 1 L_1 L1范数正则化的结果就是得到了仅采用一部分初始特征的模型;换言之,基于 L 1 L_1 L1正则化的学习方法就是一种嵌入式特征选择方法,特征选择过程与学习器训练过程融为一体,同时完成

    在这里插入图片描述

  • 为什么L1范数比L2范数更容易获得稀疏解?

    知乎

    图源PRML

    在这里插入图片描述

    • 原优化问题为

      min ⁡ w E D ( w ) \min _{w} E_{D}(w) wminED(w)

    • 加入正则化项后,目标函数(优化问题)变为

      min ⁡ w E D ( w ) + λ E R ( w ) \min _{w} E_{D}(w)+\lambda E_{R}(w) wminED(w)+λER(w)
      其中, λ \lambda λ为正则化项系数,为超参数

    • 实际上,上述优化问题与下述优化问题是完全等价的,即对一个特定的 λ \lambda λ总存在一个 η \eta η使这两个问题等价(其实加入正则化项,惩罚模型参数,相当于在优化原目标函数的基础上,对正则化项表达的含模型参数的多项式加上限制,使参数限制在某个范围,与上述式子其实是一样的效果)

      min ⁡ w E D ( w )  s.t.  E R ( w ) ⩽ η \begin{aligned} &\min _{w} E_{D}(w) \\ &\text { s.t. } E_{R}(w) \leqslant \eta \end{aligned} wminED(w) s.t. ER(w)η

    • 基于以上优化问题的转化,根据 L 1 L_1 L1 L 2 L_2 L2范数的定义,可将限制优化条件以图中橙色区域表示出来

      ∥ w ∥ 1 = ∣ w 1 ∣ + ∣ w 2 ∣ ≤ η \|w\|_1 = |w_1| + |w_2| \leq \eta w1=w1+w2η
      ∥ w ∥ 2 = w 1 2 + w 2 2 ≤ η \|w\|_2 = \sqrt{w_1^2 + w_2^2} \leq \eta w2=w12+w22 η

    • 限制优化区域固定,改变经验损失等值线, L 1 L_1 L1范数更易与其“首次”相交于坐标轴上的点(离经验损失中心点越远损失越大,故在满足解集落在限制区域的前提下,离经验损失中心点越近),所以 L 1 L_1 L1范数更易获得稀疏解

  • 28
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值