tree_node_w.m
代表分类树的类结构。很简单,只有5个成员
如果是左树则只有right_constraint有值,如果是右树则只有left_constraint有值
实际上在这里是一个类多用了。
比如一个训练好的最大深度为3(max_split == 3)的CART 树有四个节点(node),每个节点就是该类tree_node_w的一个object,同时每个节点又是一个弱分类器 (weak classifier)
如果循环训练100次(Max_Iter == 100),就有100棵CART树,即400个弱分类器。每个分类器都有对应的权重
function tree_node = tree_node_w(max_split)
tree_node.left_constrain = [];
tree_node.right_constrain = [];
tree_node.dim = [];
tree_node.max_split = max_split;
tree_node.parent = [];
tree_node = class(tree_node, 'tree_node_w') ;
RealAdaBoost.m
权重分布初始化
Learners = {};
Weights = [];
distr = ones(1, length(Data)) / length(Data);
final_hyp = zeros(1, length(Data));</