大模型微调选型指南:我的企业需要微调或者训练一个自己的大模型吗?还是RAG更适合我?先说结论:微调duck不必

图片

大家可能看到网上有很多教大家微调大模型的教程,但是大多数作者往往都没有告诉我们微调适用于哪些场景,而哪些场景不需要微调。

对大模型还不甚了解的客户可能会问:我的企业需要花时间精力微调或者训练一个自己的大模型吗?

今天我就用实际案例给大家来分享一下我们对这个问题的看法,如有不对之处,欢迎大家纠正,共同交流学习。


先说结论:大多数情况下都不需要自己训练,直接使用开源的大模型即可

图片

为什么这么说呢?

因为微调后AI大模型并不会严格按照你的数据进行回答,所以如果您是政务,医疗,法律等对回答准确度要求很高的客户,不能答错一个字,则您需要的是AI语义匹配算法,而不是训练大模型。

下面我就用一个实际例子来跟大家展示实际微调后的效果,这是一个医疗问诊开源大模型微调的项目

图片

上面用户的问题是:想咨询哪些保健品适合爷爷奶奶

训练数据首先提到可以尝试:鱼油 ;二  烟酸 三 叶黄素 

作者用50多万条实际医疗问诊数据来微调拉玛模型,这是其中一条问题,同时也是训练数据,我们现在看看训练后同样的问题是否会产生同样的答案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值