Algolia 博客中文翻译(二十一)

原文:Algolia Blog

协议:CC BY-NC-SA 4.0

什么是无头电子商务?

原文:https://www.algolia.com/blog/product/what-is-headless-ecommerce-and-how-does-it-work/

当你听到“无头商业”时,你可能会情不自禁地想到无头骑士,这个来自 《断头谷传奇》、 的心怀不满的家伙骑着他的黑色种马离开了。别担心,没人在谈论砍掉网上购物者的头。在在线购物领域,“headless”指的是许多品牌用来简化其电子商务平台的酷新技术,以便跟上购物者的需求并增加收入。

为什么网购者的需求如此迫切?自从新冠肺炎疫情开始以来,人们已经成群结队地转向零售商的网站。最初,随着实体店关门,没有其他选择。然而,尽管实体店重新开业,网上购物的趋势仍在继续,因为消费者发现了在家购物的优势。因此,对更加互动和个性化的购物体验的需求推动企业适应、改造和优化其在线实践。

无头电子商务:一个定义

那么到底是什么, 无头电子商务 功能呢?要想出一个无头电子商务的定义,首先确定电子商务应用程序的前端和后端之间的差异是有帮助的。电子商务网站的前端体验是购物者使用和互动的店面。后端系统用于处理数据输入、产品图像、定价、促销和订单细节。

在传统的电子商务应用程序(如 Shopify)中,前端和后端是在一起的。然而,这种模式的问题是,在后端添加应用程序(例如,创建站点弹出窗口的小部件)可能会影响前端,可能会降低页面速度或导致 404 错误。

当我们谈论无头商务时,“无头”部分指的是切断电子商务商店应用程序的前端(头部)。切断前端和后端之间的联系会减少开发依赖性:这意味着开发人员可以在不损害前端完整性的情况下对后端进行更改。对于希望扩展其在线产品并满足客户对更复杂购物体验的需求的企业来说,无头解决方案是理想的选择。

一个无头的电子商务平台是如何运作的?

把一个网店的前后段分开的想法似乎很奇怪,不是吗?这就像把仓库从商店里拿出来,搬到几英里以外的地方。然而,网站前端和后端的区别不仅仅是“面向客户”和“幕后”

对于传统的电子商务平台,所有对前端的定制都发生在后端。例如,对网站设计的任何更新都是在后台实现的。前部依赖于后部,后部做了双倍的工作(结果是更慢)。

有了无头电子商务,做出这些改变的能力就转移到了前端。后端是为纯粹的功能保留的:像计费、定价、报告和分析这样的过程。应用程序编程接口(API),一个让双方“对话”的软件中介,被放置在这两个部分之间。

换句话说,在无头架构中,前端承担了更多的工作。它更加独立和自包含,并且,通过 API,它只在必要时才与后端通信。

无头商业与传统商业

我们已经讨论了无头商业架构和传统模式之间的区别。但是这两者在功能上有什么不同呢?让我们来看看。

刚性与柔性架构

传统的电子商务开发者经常抱怨在设计方面有太多的限制。像 Shopify 这样的电子商务内容管理系统(CMSes)有一定数量的设计模板,更复杂的设计更改通常需要一个插件,这可能会降低网站的页面加载速度或导致网站崩溃。

无头电子商务解决方案开发团队拥有更大的灵活性。前端开发人员对网站设计和模板有更多的控制权,因此他们可以创建更好的用户体验。中介 API 使开发人员能够进行动态创新——在不影响整个平台的情况下进行快速更改。因此,对于希望快速扩展网站并适应不断变化的客户需求的在线企业来说,无头电子商务是一个很好的选择。

快与慢店面

我们已经讨论了 API 如何提高网站的页面加载速度,以及与传统 CMS 相比,这是无头 CMS 的一个重要优势。在传统模式下,对后端进行更改会影响页面加载速度、下载时间和结账时间。所有这些都会影响销售。移动缓慢或笨拙的电子商务界面会让购物者想离开网站。因此,为了避免高客户跳出率,传统开发商已经尝试性地做出了改变。

有了无头 CMS,消费者会注意到页面加载更快,他们享受到更好的用户体验,这对公司来说,等同于更高的客户忠诚度和转化率。

随着向网上购物的持久转变,以及消费者对更复杂的用户界面的期待,许多企业不得不迎头赶上。在尽可能短的时间内提供无缝、便捷的购物体验可以大大提高销售额。一些公司能够做到这一点的唯一方法是实施无头电子商务模式。

个性化与一般化体验

无头电子商务的一个标志是个性化。自从疫情站稳脚跟后,传统的商业网站就不再受顾客欢迎了。谁希望必须导航回一个产品页面(并向下滚动),在注销然后重新登录后发现他们的购物篮是空的,或者得到客观的搜索建议?

糟糕的客户体验是不被允许的。开发传统商务应用程序的开发人员已经能够使用插件来创建个性化,但是正如我们所讨论的,这些插件降低了网站的速度。

借助 headless commerce,开发人员可以跨不同的接触点自由创建更加个性化的功能,从而改善客户体验。来自后端的产品数据和客户信息仍然可以用于通知前端的个性化功能和电子商务体验。

头(肩)高于传统商业

既然你已经牢牢掌握了 无头电子商务 是如何运作的,你无疑就能理解为什么这么多企业会走向无头。在电子商务中,客户需求总是推动变革,无头化运动解决了各种问题。无头应用程序促进了商业网站上的高级开发,允许企业更快地进行更改和扩展。适应性强的框架使得实现个性化变得容易,这有助于电子商务网站更好地满足购物者的标准。

希望利用无头架构的优势,打造经得起未来考验的电子商务网站,并通过个性化的产品信息取悦客户?联系 我们的团队 以了解更多关于我们的 API-first 平台或请求一个 免费演示

什么是智能搜索,它是如何工作的?

原文:https://www.algolia.com/blog/ux/what-is-intelligent-search-and-how-does-it-work/

一台电脑曾经在象棋上赢过我,但在拳击上却不是我的对手。 —Emo 飞利浦

有没有想过(更确切地说是什么时候)计算机会想出好主意,赶走它们的人类霸主,取而代之?

你并不孤单。人工智能正在为人类的更多技术提供动力,计算机和软件每天都在“学习”并变得越来越聪明。

搜索领域无疑是智能技术正在接管的一个领域。人工智能搜索工具现在正被用于从企业数据管理到电子商务购物体验的各种应用中。

例如,你可能已经注意到最近谷歌在从网络上给你提供相关信息方面变得多么聪明。这是因为它是一个智能搜索引擎,事实上是这个星球上最聪明的一个。但为企业知识库和其他用例定制的小规模企业搜索引擎版本在采用这种扩展功能方面并没有落后太多。

什么是智能搜索?

智能搜索能力是你从一个搜索引擎那里得到的,这个搜索引擎能够根据用户在搜索框中输入的内容“理解”用户意图。也被称为认知搜索和 AI 搜索 ,它利用一系列技术,如自然语言处理(NLP)和机器学习,来更好地理解每个用户想要的东西。一旦确定了这一点,就可以提供正确的搜索查询结果。

当你意识到就在不久前,唯一可用的搜索是“哑”(因为没有更好的词)搜索,现在被称为“传统搜索”时,这是非常令人惊讶的

传统搜索有什么例子?

几年前,你可能会在一个使用传统搜索引擎的网站上进行文本搜索;也许你输入了类似“纯素食冰淇淋”的东西你会看到这个词排名最高的页面,基本上是一个出售纯素食品牌的各种杂货店网站上的产品链接列表。

如果你正在寻找在哪里可以买到一加仑纯素食冰淇淋的基本信息,这种搜索方法可能会很有效。但你可能一直在寻找与纯素食冰淇淋更相关的东西。

这就是现代智能搜索解决方案派上用场的地方。

智能搜索有什么例子?

如果你在谷歌的搜索框中输入“纯素食冰淇淋”,你的体验会更加令人印象深刻。人工智能驱动的智能引擎仍然使用网络爬虫和网页排名,但该软件也分析用户意图。

当你像这样搜索一个宽泛的术语时,一个智能搜索应用程序会将结果分组为基于意图的类别,比如购物选项、食谱和常见问题的答案。然后,你可以快速锁定你心目中的类别,并在搜索结果中深入搜索。

“纯素冰淇淋”涵盖面很广。与其知道在哪里可以买到,你可能只是想知道是什么决定了真正的纯素食冰淇淋,或者里面有什么成分。

智能人工智能支持的搜索引擎技术考虑了所有这些变量,所以你不太可能因为第一个搜索查询失败而不得不重复搜索查询。搜索结果通常更准确,自然符合你的具体需求,无论你是想吃纯素食冰淇淋,还是只想知道它与素食冰淇淋有何不同(有这样的东西吗?).万一你还没有清楚地说出你正在寻找的确切的纯素食冰淇淋数据,你会看到“人们也会问”的问题,比如“纯素食冰淇淋比普通冰淇淋健康吗?”

智能搜索是如何工作的?

现在我们知道,智能搜索是基于识别搜索者的特定意图,以便快速提供正确的信息。但是智能搜索信息解密过程实际上是如何工作的呢?

智能搜索结合了包括自然语言处理和机器学习在内的 技术 。例如,它可以在语义术语之间建立联系,这是传统搜索引擎(只查看关键字的搜索引擎)无法识别的。它还可以做“思考”类的事情,比如理解文档的结构。

让我们详细了解一下这些功能。

过滤内容

网络爬虫搜索大量的结构化和非结构化数据,以识别最准确的搜索结果。由于这项繁琐的工作,智能搜索引擎采用先进的过滤器,缩小搜索范围,以便找到最相关的内容。

分析文档结构

智能搜索还有助于内容管理活动,如查找 pdf、模板和可视单页内容。这是因为它使用文档扫描技术,可以识别文档的类型和结构,例如,它是信息图、合同还是发票;它是否包含表格、目录、页眉或页脚。该软件可能对搜索者正在寻找的文档格式进行“有根据的猜测”,并在此基础上,为搜索者优先考虑最相关的项目。

应用自然语言处理

自然语言处理 是计算机程序理解人类口头和书面语言的能力。NLP 使搜索引擎能够理解从多个数据源提取的数字内容,并解释抽象的语言结构,如包含同义词、细微差别或单词之间复杂关系的语言结构。能够学习人们语言背后含义的搜索应用程序可以更有效地预测搜索意图。

应用机器学习

机器学习是人工智能的一个分支,利用数据和算法来复制人类的学习方式。这种学习是对检测到的东西的反应。

例如,如果某人一直在搜索特定主题,然后开始对看似相关的东西进行不同的搜索,机器学习功能可以假设这两个搜索确实相关,并主动建议包含这两个主题的材料。随着时间的推移,随着每个额外的查询,搜索引擎在预测最准确的搜索结果方面变得更好(更聪明)。

机器学习的另一个应用是当智能搜索引擎检测到信息模式时,这可以帮助它识别垃圾邮件和重复内容。这意味着搜索者不必受制于大量不想要的数字信息。

为你的网站做出明智的选择

你的公司还在为你的网站或应用程序使用传统的搜索技术吗?既然你已经读了这篇文章,你可能想知道你是否应该通过添加智能搜索来优化。

如果这个想法有道理,那就去查查阿哥利亚完全主持的 SaaS 搜索解决方案 。我们提供人工智能支持的智能搜索,让用户轻松找到他们想要的东西,沿途发现感兴趣的新项目,并对他们刚刚享受的出色客户体验感到完全满意。

从开发的角度来看,无论您的网站是专注于电子商务、医疗保健、媒体还是其他领域,我们强大的 API 都可以让您创建和简化搜索体验,以满足您的用户和团队的需求。 联系我们 获取详情,或者现在就开始免费构建伟大的企业内容 搜索功能

什么是意图数据?

原文:https://www.algolia.com/blog/ux/what-is-intent-data-and-how-can-you-use-it-to-predict-user-intent-and-increase-roi/

如果你有一家实体商店,详尽地采访每一个走进来的不知情的人,以获得他们想要的东西的详细了解,会怎么样?包括他们在哪里寻找背景信息(如果适用的话),他们从与朋友和邻居的交谈以及在亚马逊上查看推荐中了解到的信息,他们对你的产品在价格方面的预期,他们对你商店的整体用户体验的感受,以及其他看似相关的趣闻。

你肯定会让他们怀疑你在干什么,因为那太过分了。但是你可能也能够自信地辨别 确切地说 他们想要什么——他们真正的 意图——以及这些基准数据是否与你的公司碰巧提供的产品或服务的好处或功能重叠。

继续……想象你很满意你花了最后一个小时来收集他们的想法,并且你已经让他们浏览你的店内商品(如果他们在经历了这个小小的磨难后还有兴趣这么做的话)。

你建立了一个基线级别的电子表格,开始摆弄你的临时意图预测模型,并试图建立关联,希望能找到一些自然的方法来预测用户意图:找到他们想要的东西。

最后,基于这种认识,你对你的网站做一些优化,以尽可能最吸引人的方式向他们推销,你努力提升你的客户体验,以满足他们的期望。

不管你的购物者是消费者还是企业买家,这种笨重的预测形式相当于现代的信息检索和购买意图验证。

意向数据可以通过计算机科学的进步来收集,如 自然语言处理语义搜索 ,这要归功于 97%的消费者在做出购买决定之前会研究产品和服务。有了人工智能和先进算法增强的软件,研究人员可以准确找到用户在寻找什么,就电子商务而言,他们是否可能很快点击购买。

什么是意向数据?

买家意向 是一回事;买家意向 来自独特买家旅程的数据——记录该意向的重要证据——是另一个例子。

意向数据是关于潜在买家在线行为的信息,表明他们接下来可能会做什么或购买什么:他们的界面阐明了他们的购买意向。它利用 IP 地址和浏览器 cookies 等标识符,以及关键词和内容的点击量来收集信息。例如,某人的内容消费可能包括阅读在线评论、细读博客文章和点击其他内容的链接、观看视频、获取门控材料以及比较产品。

意向数据通常也围绕特定的主题、产品和服务。它专注于与主题相关的(积极或消极)情绪,提供了比传统的分析或行为数据更全面的视图。

预测分析和意图数据有什么区别?

预测分析 (也称为预测意图)大多与过去发生的事情联系在一起。它使用大数据来预测谁将在何时购买什么。信息来自各种数据源,如客户资料和销售,这种方法融入了数据挖掘、数据建模、机器学习模型、历史信息和人工智能等元素。

意向数据 可以说是卓越的,因为它专注于跟踪和记录购物者的实际在线探索。因此,它可以更好地帮助营销人员和销售代表识别潜在的潜在客户,并确定他们准备购买的时间,例如他们在搜索栏中输入相关关键词、观看网络研讨会或下载相关内容的时间。

值得注意的是,一家公司当然可以同时使用这两种方法来获得完整的数据。然而,收集买家意向数据并不复杂(需要更少的集成),而且与预测意向不同,它可以立即提供具体的实时洞察。

B2B 意向数据生成主要销售线索

当涉及到收集和分析意向数据时,B2B 买家特别感兴趣。事实上,汇总的商业买家意向数据非常有价值,以至于 Gartner 将其称为“B2B 销售线索生成的未来”并且Gartner预测,到 2022 年底,超过 70%的 B2B 营销人员将利用第三方意向用户数据在购买过程中锁定 B2B 销售前景,或在选定的客户中吸引买家群体。

两种意向数据

意图数据分为两种类型:主题和上下文。

一个 题目 类似于一般意义上的:一个主题。在这种情况下,它是在线内容的主题。主题是通过自然语言处理(NLP)和深度学习模型的应用正式确定的。主题可以是概念、地点、人物、产品、公司或其他实体。

当你搜索某样东西时,你表明了你对这个话题所包含的任何东西的兴趣。

然而,通过编辑意图数据,理解人员角色的背景和他们的搜索会有很大帮助,从而使数据真正相关。要获得准确的购买信号,真实世界的背景是关键。例如,搜索者可能是一名正在做研究的学生,或者是一名正在寻找要在国际会议上展示的数据的人,而不是有权为一家大公司进行采购的企业采购员。

当你有一个清晰的主题和清晰的背景时,你就对真实意图有了一个很好的了解,你的营销人员就可以充满信心地前进了。

三类意向数据

数据根据第一方、第二方和第三方提供的信息进行分组。

第一方意向数据

这是从你自己的站点收集的访问者意图信号。企业通过使用分析工具或营销自动化平台来收集目标市场的第一方数据。

第一方数据可能是匿名的,或者你可以使用 IP 身份或该人填写的表格来挖掘他们的具体细节。

数据可以来自人们在你的网站上填写的表格,他们完成的下载,他们输入的搜索词,他们登陆和查看的页面,他们放入购物车的物品(无论他们是否购买),任何基于活动的东西。

更广泛地说,第一方意向涵盖了您在与网站访问者、潜在买家和现有客户的互动中收集的任何信息,包括您从任何电子邮件营销活动和社交媒体投放中收集的信息。

第二方意向数据

第二方数据本质上可以被认为是另一个组织从第一方收集的数据。对于第三方信息,数据是由第二家公司收集的,例如评论网站(想想 Yelp)或发布网络或链接您的产品或服务的网站集合。当用户在这些类型的网站上注册时,他们授予网站所有者分享和出售他们的联系方式和他们留下的任何意向数据的权利。

与第一方数据一样,这些收集的材料可能包括来自网站、应用程序和社交媒体活动的客户参与度数据、店内购买历史、调查反馈等。

搜索引擎是第二方客户意图数据收集器的一种类型。比如你用 Google 做广告,你的关键词数据技术上是第二方数据,而不是第一方。人们搜索提供关键字给谷歌,而不是直接在你的网站上给你。你以非正式的伙伴关系与谷歌签约,以获得对这些关键词的访问权。

第三方意向数据

最后一种意向数据包括从另一个站点收集的信息。与第一方数据一样,它可能是从填写的表格和 IP 地址、与聊天机器人的交互以及其他活动中收集的。

第三方数据通常由从事收集意向数据业务的公司收集。这些意向数据提供商通常可以提供一系列的研究和购物接触点,由用户在访问您的网站之前着手进行。

哪种类型的意向数据最适合你的企业?

第一、第二或第三:你应该选择哪一个?

这取决于诸如营销活动的规模等因素。如果您收集意向数据的预算有限,可以考虑以下几点:

第一方意向数据的优点
  • 数据是 完全属于您的: 一个独特的数据集,阐明了您的买家的兴趣和痛点(相比之下,如果您选择购买第三方意向数据,您的竞争对手也可以访问这些数据)
  • 控制并能以任何最符合你需求的方式分割 你的数据
  • 你的营销团队可以 利用你收集的数据 来强化你的销售流程和营销策略
第一方意向数据的缺点
  • 第一方数据仅构成 购物旅程的一个片段
  • 你可能会错过那些没有访问你自己网站的潜在客户的数据,例如,那些只在第三方网站上研究竞争对手的人
第三方数据的优点
  • 你可以看到一个潜在客户的活动、他们所走的整个路线以及他们所走的每一步。
  • 第三方数据是 可用的最早 的任何类型。这意味着它可以帮助公司计划如何解决问题,主动击败竞争对手,并在购物者虚拟踏上自己的网站时提供更个性化的体验。

鉴于这些优势和局限性,公司通常会结合第一方和第三方数据,以获得其潜在客户旅程的最完整图片。

如何利用意图数据?

现在你明白了为什么意图数据对预测用户行为和增加收入如此重要。本质上,如果你能确定潜在客户在销售周期中的位置,你就可以适当地向他们提供他们想要的相关内容,以促使他们更接近购买,从而有可能大幅增加收入。

这一切都归结于使用你的意向数据来识别准备购买的潜在客户,然后相应地调整你的营销活动。

大多数企业开始利用意向数据来帮助销售人员确定要接洽的目标客户的优先顺序。然后,销售团队可以在他们可能感兴趣的时候,直观地联系基于客户的营销(ABM)潜在客户,从而提高转化率。

意向数据也可用于未来潜在客户的相关工作,因为人们揭示了他们正在进行的购物和购买模式。

想让您的意向数据利用率更上一层楼吗?您可以使用这些数据来创建基于特定活动的独特群体和目标列表,然后让市场营销以更加个性化的方式进行受众拓展。

用例:利用搜索意图数据

如果你有一个零售网站,你无疑会关心你的搜索意图数据的质量。

您可以立即开始从您网站访问者的行为中收集 搜索意图 数据,以便提供 最先进的结果 。Algolia API 平台 将让你 预测 你的用户的意图,并在你的网站和应用中提供正确的搜索结果。

此外,您的决策者可以使用我们现成的搜索分析来筛选数据并调整他们的内容营销工作。您可以通过将用户的搜索分解为流行搜索、没有结果的搜索数量和过滤器使用等指标来模拟用户的行为。

包括 Lacoste、Slack 和 Medium 在内的公司依靠我们来满足其潜在客户在独特购买流程中的搜索需求。

想加入这些成功的网站并享受可能的留存率或转换率的提升吗? 联系我们 了解如何利用意向数据来提高 您的 客户对搜索的满意度,以及我们认为肯定会带来的所有回报。

什么是以知识为中心的服务?

原文:https://www.algolia.com/blog/ux/what-is-knowledge-centered-service/

您知道您的 IT 服务台很可能面临越来越大的压力吗?由于数字化转型项目的增加而涌入的需求意味着许多支持组织正在努力为其员工提供足够的 IT 支持。

为了帮助简化支持流程并提高利益相关方的服务水平,许多服务台经理正在转向以知识为中心的服务(KCS)方法。KCS 包括持续分享和提炼知识。拥有客户支持的 KCS 有很多好处。服务台代理通过搜索访问历史公司内容并不断优化该内容,所有这些都是为了帮助快速跟踪解决过程。

KCS:最佳实践方法论

以知识为中心的服务(也称为以知识为中心的支持)是一种描述组织如何更好地利用其拥有的信息来改善其服务交付的方法。KCS 方法让 IT 服务台工作人员不仅解决系统、员工和利益相关方的问题,还记录解决方案流程,以便在未来实现有效的知识共享和客户成功。在 KCS 进程中,知识库的不断更新改善了服务的提供。

什么是知识库?

知识库是一个在线图书馆,包含关于产品、服务、问题和主题的知识文章。它可能包括产品常见问题解答、故障排除指南、用户手册和其他文档。为了支持知识的收集、检索和共享,今天最好的知识库往往是人工智能驱动的和可搜索的。对于处理许多服务请求的支持团队来说,知识库中的集体知识对于加快新代理和老代理的响应时间至关重要,因为他们会定期参考公司的历史内容。

知识型服务的好处

像所有好的 知识管理 一样,KCS 的实践可以帮助您组织的服务台捕捉知识,以多种方式提高客户满意度。这对你的团队有帮助:

破案更快

支持团队随手可得的可搜索数据库意味着不再需要第二次猜测服务请求。过去的问题解决事件都有详细记录,让代理有所参考。常见问题可以快速解答。

打造专业文化

专业文化是指以知识和技能为特征的服务组织文化。丰富的资源库有助于团队成员培养专业知识文化,使代理能够处理案例。KCS 处理服务请求的方法可以产生消息更灵通的服务代理和更熟练的查询解决方案。

优化利用资源

拥有一个 可搜索的知识库 意味着内容可以进行优化搜索。特别是对于大型知识库,使用关键字标记内容可以让搜索正确信息的代理更快地访问特定内容,从而减少搜索正确信息的困难,并有助于确保运营效率。

启用自助成功策略

自助式数据库为支持代理提供了对其工作的自主权和所有权,并加快了新代理的培训过程(他们可以使用该数据库查看案例是否已被记录)。

增加首次接触分辨率

优化的资源数据库不仅加快了解决流程,还增加了案例首次得到解决的可能性,有助于持续改进。如果第一次接触的解决率很高,这应该表明客户以高效的方式获得了良好的服务。

创建以 KCS 为中心的知识库

创建有效的知识库需要时间,并且是一个持续的过程。然而,使用 KCS 方法可以帮助你更快地创建一个知识库,并有效地维护它,使它总是最新的。

以下是如何创建一个反馈知识库:

第一步:创建好文档

当 IT 服务台的询问得到解决时,创建适当的文档(如果它们不存在)是很重要的。为每个案例中的客户问题创建支持文档的过程——无论是以常见问题解答、文章、一页纸、案例研究、故障排除指南,甚至是完整的手册的形式——都将快速构建一个全面的有用资源库。

第二步:使用一致的文档结构

创建标准化的文档结构能够实现整个库的一致性,并简化创建额外文档的过程。代理人可以在整理文档时从内容模板开始。

第三步:运用你组织的知识

一个伟大的知识库仅仅存在是不够的。支持团队必须接受如何使用该平台、如何创建文档并将其添加到库中,以及如何有效地使用搜索在他们需要时找到正确的信息方面的培训。

搜索第一流知识库的重要性

您的知识库应该以直观的方式组织,并且易于搜索。为了优化可访问性,您可以按主题或内容类型排列内容。搜索栏确保用户可以在他们需要的时候立即调出正确的内容。

通过可搜索的知识库,您可以使用关键词按产品、主题或任何其他相关类别对信息进行细分。

关键词最佳实践

关键词是一个单词、短语或一组单词,最能描述内容所涵盖的内容。有了知识库,工程师可以使用关键字来查找与其问题相关的文档。例如,对于丢失密码的困境,代理可以通过在搜索栏中输入关键字(如“密码”或“忘记密码”)来查找相关信息。

支持团队可以定义他们自己的记录和查找文档的规则。这里有一些正确做这件事的技巧

  • 选择代理可能搜索的关键词: 了解代理的想法。他们可能会使用什么搜索词?他们如何表达他们的搜索查询?
  • 将关键词与内容联系起来: 每个关键词都应该描述内容的内容。
  • 使用长尾关键词: 长尾关键词通常是三到五个单词的短语。长尾关键词更长,因此更具体,有助于缩小内容范围。
  • 在内容中使用链接: 让服务管理内容创建者添加超链接,将搜索者导向其他相关内容。
  • 建立关键字目录: 作为参考文档,创建与代理可能需要的信息相关的关键字列表。比如这里有一个 关键词列表 帮助人们查询微软知识库。

拥有可搜索知识库的好处

由人工智能软件支撑的搜索栏是一个成功知识库的重要特征。当您的代理拥有这些信息时,他们可以:

  • 快速检索内容 并快速满足客户需求
  • 轻松找到自己需要的 享受愉悦的用户体验
  • 建立文档管理流程: 定期用关键词组织文档,直观地组织内容

添加最佳搜索来升级您的知识库

总而言之,您可以集中您的 IT 历史支持信息,并确保持续优化您的内容,以便在您的服务团队最需要时为他们提供支持。你可以让所有相关的文章都容易找到(而不是从孤立的文件夹中一篇一篇地挖掘)。

Algolia 的高级搜索 API 随时准备在这两方面提供帮助。我们的搜索功能是著名和可靠的,具有成熟的算法、集成和用户界面库。无论您是否正在实施 KCS 方法,帮助您的服务台代理毫不费力地挖掘他们需要的信息并能够重复使用知识都是至关重要的。

免费发现搜索如何帮助您大幅提高服务台的效率(更不用说用户体验了)。如果你喜欢你所看到的,没有大量的前期投资,你可以选择灵活的支付方式。 让我们知道 聊天的好时机,我们再联系!

搜索意图是什么意思?

原文:https://www.algolia.com/blog/ux/what-is-meant-by-search-intent-and-what-are-the-different-types/

你现在想要什么?

也许是午睡,吃点蘑菇披萨,一天中更多的时间;差不多吧。

比方说,你想吃一个新鲜的薄脆皮蘑菇比萨饼,里面有奶酪。

听起来很完美。但是冰箱里的剩菜可能足够了。或者车库里有冷冻烤焦的微波意大利香肠。如果你有食谱,用农贸市场的蘑菇从头开始做就很棒了。但是现在,你最好的选择是去当地的比萨饼店吃一个热的奶酪馅饼,上面覆盖着新鲜的香菇,橄榄油和少许蒜末。(这对于内容营销来说怎么样?)

什么是搜索意图?

所有这些都是说,当你在网上或特定网站上进行搜索时,你有一种特定类型的意图,或者你可以在几种相关类型的意图之间切换。营销人员想知道那是什么,或者那些是什么,这样他们的搜索引擎就能给你正确的搜索结果。

当人们在网上搜索时,他们可以在他们的搜索查询中有任何数量类型的搜索意图。因此,考虑到这些关于蘑菇的想法,你在搜索栏中指出的在搜索引擎结果页面(SERP)上调出结果以便导航到正确的网页的意图可能是这样的:

蘑菇披萨靠近我

交付数量披萨我的心

食谱蘑菇披萨

当地最好的蘑菇披萨

披萨为什么会上瘾?

香菇和牛肝菌的区别

所以搜索查询可以包含多种类型的搜索意图。那些类型的意图是什么?

理解用户意图

你在搜索框中键入的单词或短语——你输入的关键词——通常能很好地表明你的意图。例如,搜索引擎可以判断你是否:

  • 正在寻找名牌产品
  • 正在浏览,以便在做出购买决定之前比较信息
  • 你已经做好了购买的准备,只需要找到合适的产品页面
  • 你很好奇,并且有一个你想要回答的特定问题
  • 想找菜谱
  • 正在旅行,想找一个受欢迎的地方吃饭

为什么搜索意图很重要?

当人们的意图明确时,营销部门可以正确地设置他们的搜索引擎优化(SEO)来包含正确的关键词,以吸引你访问他们的网站登陆页面。

用户搜索意图——搜索者进行搜索背后的动机——已经成为管理 SEO 的商业人士的首要考虑因素。意图现在被认为是一个比以前更有效的指标,以前是根据输入的关键字进行推断。

营销人员热衷于找出整个搜索意图,他们已经确定了四种类型的意图。前三个由专家一致命名,而第四个命名略有不同,但涵盖了基本相同的概念。

类型 1:信息意图

信息搜索的意图非常简单:使用这种类型的查询,搜索者感兴趣的是挖掘一些内容,想知道他们看到的一些东西或他们想到的一些想法;他们很好奇。

在他们的搜索查询中,他们会问一个“谁”、“什么”、“何时”、“何地”、“为什么”或“如何”的问题(并且不一定会把它表述为一个问题)。

示例信息查询:

Spotify 上排名第一的艺人是谁?

什么是 virga

2023 年劳动节

阿姆斯特丹的火车站在哪?

蝙蝠为什么倒挂

没有经验如何找到工作

一个信息搜索查询 不能 的一件事就是与购买某样东西有关——这被认为是交易意图。

例如,判断谷歌搜索是否是信息性的一种方法是通过搜索引擎回应的细节。第一个结果通常是高质量的内容元素,如定义、地图、图表或图形等视觉效果、食谱、特色片段(简短的广告)或“人们也问”内容。

类型二:导航意图

这种类型的内容查询听起来像是表明搜索者想要知道如何去一个物理位置,不是吗?然而,导航查询实际上是想找到一个特定网站的快捷方式,比如一个特定品牌的网站(想想苹果或脸书)。搜索者不知道 URL 或名称的确切拼写,或者他们懒得键入。所以他们只需输入公司名称。有了导航式搜索查询,人们不再需要寻找特定的产品来购买(至少现在还没有)。导航搜索的目的是以最快的方式到达搜索者选择的网站的主页。

类型三:交易意图

你猜对了:这种类型的查询可能表明某人想要并准备购买某样东西——某种特定的产品或服务。如果你有一个电子商务网站,以产品名称作为目标关键字的交易查询将是预期的。搜索词可能是(但不总是)品牌名称,因为用户准备放弃公司网站或在线市场上的旋转产品传送带和其他元素,并支付他们的现金。这些搜索者使用听起来像交易的词,比如“购买”、“花费”或“注册”。(【成本】也可能是 而不是 表明事务性搜索意图;它可能只是面向研究的查询中的一个单词,如下所述。)交易搜索者也可以寻求捐赠。

下面是一些事务性搜索的例子:

克托在乔氏购物

买最好的洗发水治疗脱发

亚马逊折扣券

去哪里捐旧 iPhone

指向目标

第四类:商业意图(又称商业调查、考虑、优惠)

通过“商业”或另一个名称的搜索,某人正在做他们的研究(尤其适用于 B2B 交易),可能在他们决定访问产品页面买东西、注册服务或与某个组织做生意之前比较产品和选项。例如:

点评登山鞋男

技术风格 vs 缝合修复

最好的狗

比较名人邮轮价格

以上总结了搜索意图的类型。听起来很简单,对吧?

不完全是。虽然许多搜索很容易被归类为体现了这些类型的用户意图之一,但其他搜索仍然不会准确地揭示搜索者的意图。这是因为搜索者可能不知道他们当时想要什么,或者他们可能以一种模糊的方式表达他们的查询,这种方式可能被搜索引擎以多种方式解释。

这意味着公司能够准确识别用户的意图是至关重要的

如何高手破译关键词意图

由于用户进行模糊搜索的可能性,考虑如何设置搜索意图(例如,根据搜索排名因素)以及它在搜索引擎软件中的工作效率是值得的。

Algolia 使用 机器学习 来检测意图,并采用平局决胜算法来确定适用于任何给定查询的所有规则的优先级。如果需要澄清, 图形 被创建。

当您确定了特定查询术语和短语的预期效果后,您可以在用户的搜索与这些术语匹配时动态更改用户的特定搜索结果。

你用 规则 配置这个。这里有一个 的例子,说明意图匹配规则如何为零售商 工作。

意图也很重要 搜索 vs 浏览 。通过提供更丰富的用户界面来超越标准的搜索功能,可以提高搜索框的使用率,并确保满足搜索者的需求。为什么?人们并不总是有足够的技术知识来知道如何有效地搜索,或者如果他们最初的搜索不起作用,如何调整搜索。一个更好的搜索界面可以帮助人们不放弃地搜索——如果空手而归,还可以继续搜索。

你是想提高网站点击率的开发者吗?你可以开始 构建 一个有前途的新搜索解决方案(而且是免费的)。该视频进入 意图检测,规则

你是一个想要改善你的数字营销策略以获得更高转化率和降低跳出率的商业领袖或营销人员吗?

不管怎样,我们都愿意提供帮助。要了解如何增强对网站或应用中搜索意图的检测,以改善用户体验, 与 Algolia 团队联系

什么是自然语言处理(NLP)

原文:https://www.algolia.com/blog/product/what-is-natural-language-processing-and-how-is-it-leveraged-by-search-tools-software/

语言是我们最基本的交流方式之一,但它也是丰富的信息来源,我们无时无刻不在使用它,包括在网上。如果我们能以自动化的方式使用这种语言,包括书面和口头语言,会怎么样?这就是自然语言处理要做的事情。

自然语言处理,简称 NLP,将语言处理成软件可以使用的信息。有了这些信息,软件就可以执行无数其他任务,我们也将对此进行研究。

自然语言处理为什么有必要?

但是首先,为什么自然语言处理是必要的?首先,每天都有大量的信息通过自然语言被创造和分享。每天都有数十亿的社交媒体帖子出现。数万亿次搜索发生在大大小小的搜索引擎上。通话记录。电子邮件。分类广告。新闻文章。其中一些,如搜索查询,直接受益于 NLP。其他的,比如新闻文章,可以通过 NLP 处理来创造价值。

让我们更详细地看几个例子。我们将从看新闻文章开始。

琼斯将出任 Acme 公司总裁

马库斯·l·琼斯今天宣布他将成为 Acme 公司历史上的第四任总裁。他将带领这家小部件制造商进入下一个篇章,研究向欧洲、墨西哥和加拿大等新市场的扩张。

现在想想我们可能想对这篇文章做的所有事情。例如,我们可能想知道哪些公司、主题、国家和其他关键的 实体 被提及,以便我们可以对类似的文章进行标记和分类。我们可以这样做的一个方法是首先决定只有名词和形容词有资格被考虑作为标签。为此,我们将使用一个 词性标签 ,它将指定文本中每个单词是什么词性。

NLP 规范化和标记化

但是,即使我们识别了这些单词,事情也很棘手,因为“widget”和“widgets”有什么不同吗?当然不是!所以我们需要使用一些 规范化 ,将单词折叠到它们的核心,以便不同的变体可以被认为是等价的。规范化可能很复杂,例如“欧洲”和“欧盟”,或者“马库斯·l·琼斯”和“马库斯·琼斯”。

这种方法甚至忽略了与标记和分类相关的项目可能不是单个单词,甚至可能是一个短语,例如“Acme Corp”。识别这些项目是 标记化 的工作。标记化将一个较大的文本分解成较小的部分。它可以将文档分解成段落,段落分解成句子,句子分解成“记号”(这里我们就不说 字了 ,因为 Acme Corp .可以是一个 token 但不是一个字,而“不是”是一个字,但往往会分解成两个 token:n ’ t。)标记化可能非常困难。例如,即使像识别段落中的句子这样“简单”的事情也是棘手的,因为当你有一个像文章中第一个这样的句子时会发生什么?“马库斯·l .”是因为以段落结尾,后面跟着一个大写字母的单词而成为句子吗?)

使用 NLP 进行命名实体识别

总而言之,识别关键概念就是所谓的 命名实体识别 。命名实体识别不仅仅是识别名词或形容词,而是识别文本中的重要项目。在这篇新闻文章中,我们可以确定 Marcus L. Jones、Acme Corp .、欧洲、墨西哥和加拿大都是指定的实体。

最后,我们可能要了解单词之间的联系。这将有助于我们的程序理解第二句话中“他”是谁,或者“小部件制造商”描述的是 Acme Corp. 背后的语义

自然语言处理搜索

自然语言处理对于搜索 查询同样重要,但是有其自身的挑战和需求。说明这一点的一个好方法是讨论自然语言处理的一个重要因素:世界上有成千上万种自然语言。不同的语言会有不同的需求,虽然英语是许多 NLP 软件开始使用的语言,但它并不代表所有的语言。

举个例子,英语中很少有 复合词在一起 不用一些分隔符,不管是空格还是标点。事实上,它是如此罕见,以至于我们有了 这个词来形容它。其他语言不遵循这种惯例,单词会相互碰撞,完全形成一个新单词。德语中“hundehütte”一词的意思是狗屋。不是两个词,而是一个,只是把这两个概念合起来指。

一个幼稚的搜索引擎会将hundehütte匹配到hundehütte足够好,但它不会将该查询词匹配到短语“hütte für gro e Hunde”,这意味着 大狗之家 。自然语言处理将查询词分解成单个的部分,这样搜索者就可以看到正确的产品。这说明了 NLP 的深度学习元素是有用的另一个领域,以及 NLP 如何经常需要特定于语言。

自然语言处理为程序构造数据

通过自然语言处理的所有这些步骤(统称为自然语言处理 流水线 )返回以软件可以理解的方式构建的信息。到目前为止,你已经看到语言中隐藏了大量的信息。一个 40 字的段落可以涉及一个公司,一个人,三个地区,以及关于这些项目的许多信息。人类非常擅长识别语言的重要部分,并理解它是如何组合在一起的,但不擅长从数百、数千或数百万的文本中寻找趋势或将它们组合在一起。大多数软件程序正相反:它们可以发现趋势或对文本进行分类,但它们不擅长文本本身。这就是为什么我们使用定制的软件,自然语言处理,将文本组织成那些程序可以使用的方式。(顺便问一下,为什么不把所有步骤合并成一个程序呢?拥有小而集中的程序可以使每一步都做得更好,并允许我们为不同的目的组合不同的工具。)

结论

上面,我们看了一篇新闻文章和一个搜索查询的例子,以及我们如何使用自然语言处理来更好地转换文本。现在想想我们讨论过的文本内容的其他例子,比如通话记录、分类广告或电子邮件。这些文本可能需要什么样的处理? 有关 Algolia 的搜索和发现 API 如何利用 NLP 的更多信息,或者了解我们如何帮助您在您的网站或应用中实现这一强大技术以获得更具吸引力的用户体验的更多信息, 请联系我们的专家团队

什么是自然语言搜索?

原文:https://www.algolia.com/blog/product/what-is-natural-language-search/

自从互联网诞生以来,搜索已经发生了很大的变化。用户现在在浏览网站或搜索引擎时期望快速和个性化的结果,他们不太可能为了找到他们想要的东西而尝试许多不同的关键词。随着新计算技术的兴起,网站开始提供更自然的搜索体验,提供创新的方式来探索内容——主要是通过自然语言搜索。搜索正迅速成为一种双向对话。

什么是自然语言搜索?

自然语言搜索允许用户使用他们的日常语言而不是关键字在设备中说话或打字。用户可以用他们的母语使用完整的句子,就像他们在和另一个人说话一样,让计算机将查询转换成它可以理解的东西。

自然语言搜索与关键词搜索

多亏了谷歌和其他搜索引擎,用户已经习惯了使用关键词搜索。但是关键词搜索并不是用户提问的直观方式,用户实际上很不擅长使用它们来找到他们需要的东西。它们迫使用户去掉疑问词和其他连接语言,形成搜索引擎可以用来查询数据的文字字符串。还可能需要业务部门努力从关键字搜索中挖掘意图。

虽然关键词搜索系统通常允许某种形式的复合问题,但它们经常迫使用户手动构建复杂的 搜索结构 。例如,不要问一个简单的问题,如“有西红柿和奶酪的素食食谱是什么?”,你应该搜索更像“素食食谱” 番茄奶酪 的东西。

然而,随着 Siri 和 Alexa 等数字语音助手的兴起,人们越来越习惯于用完整且语法复杂的句子与他们的设备 进行对话。其结果是,许多用户现在在不同的设备和平台上形成类似问题的查询。用户正变得习惯于使用自然语言来获取信息,并期望快速得到结果。因此,所有类型的搜索系统都能够开始接受自然语言搜索是至关重要的。

历史自然语言搜索

虽然计算机科学和计算速度的进步使得自然语言搜索取得了突破,但实现这些系统的尝试实际上可以追溯到互联网和 web 的早期。

1993 年,MIT 人工智能实验室开发了 START 自然语言问答系统 。虽然从技术上讲,它不是一个互联网搜索引擎,但 START 系统允许用户使用完整的自然语言句子搜索在线信息百科全书。

几年后的 1996 年, 问吉维斯 推出了。这是第一个允许用户通过自然语言探索网络的搜索引擎。然而,事实证明,吉夫斯有点超前于他的时代。此后不久,谷歌推出了一个关键词搜索引擎,并迅速建立了一个强大的系统,具有令人印象深刻的相关性评分,轻松击败了竞争对手的结果。

近二十年后,谷歌和其他搜索引擎开始意识到自然语言搜索的价值,并进一步发展 Ask Jeeves 试图提供的体验。

自然语言搜索如何工作

自然语言搜索使用一种叫做自然语言处理(NLP)的高级计算机科学技术。这个过程使用大量数据来运行统计和机器学习模型,以推断复杂语法句子的意义。随着互联网公司收集越来越多的数据,这在过去十年变得更加可行。计算能力正以指数速度增长,以便处理这些数据。

自然语言的力量不仅来自解析问题的能力,还来自分解复合句和基于上下文的句子的意义的能力。例如,如果一位顾客问一家电子商务商店“你们为我的孩子准备了什么尺寸的 t 恤?”,搜索系统可以确定客户正在寻找儿童类别中的 t 恤衫,并且想要知道有什么尺寸的存货。如果商店有这位顾客过去的购买和搜索历史,它甚至能够确定衣服的最佳尺寸和首选款式。

自然语言搜索不再仅仅是从个人助理那里获取天气等基本信息的工具。越来越多的消费者开始直接通过语音助手或手机语音搜索开始他们的购物和品牌探索之旅。因此,至关重要的是,公司要确保优化他们的技术和销售渠道,以确保这些消费者能够用对话语言与他们交流。

设计自然语言搜索友好网站的四个技巧

在为自然语言搜索优化网站时,许多网站过度关注 SEO,而没有优先考虑用户体验。然而,最终,自然语言搜索的目标是为客户提供一个有帮助的、直观的、吸引人的界面来浏览网站。以下是一些牢记用户体验的设计技巧:

1。设计一个减少大海捞针的语音搜索引擎

搜索系统应该利用所有可用的信息和上下文。例如,用户档案和过去的搜索可以帮助提供关于用户可能想要什么的有价值的信息。如果语音查询有点模糊,这一点特别有用,因为搜索引擎可以根据上下文来推断含义。此外,通过设置过滤器,按照预定义的类别对索引数据进行分类,有助于优化搜索,为用户提供更相关的结果。

2。研究并理解用户如何进行对话式搜索

虽然自然语言处理工具在理解一般含义方面非常强大,但大多数企业会发现他们的行业或领域中存在需要微调的细微差别。查看和定期分析用户搜索可以帮助揭示搜索中的这些趋势,以便可以相应地优化模型。

3。使用自然搜索查询测试网站内容的排名

除了审查搜索准确性之外,重要的是实际网站内容的构建方式要确保自然语言搜索引擎能够正确匹配查询。尝试运行常见的搜索查询来查看内容的排名,并逐渐调整内容来查看它对结果的影响。

4。在网站内容中使用日常语言,回答客户需求

在网站内容中使用对话式语言将有助于确保用户的问题和需求得到回答。对于可能无法在内容中直接找到答案的常见问题,在 FAQ 部分或专用页面中添加这些问题的答案会很有用,这样用户仍然可以找到答案。

总之,设计一个自然语言搜索友好的网站包括使用数据为搜索提供上下文,微调搜索算法和过滤器以适应特定的业务领域,以及构建网站内容以适应对话式搜索模式。这些过程将有助于客户习惯于过渡到与您的网站更具对话性的体验。

你的站点自然语言搜索准备好了吗?

随着消费者越来越多地将搜索转向对话和自然语言,企业必须跟上步伐来回答这些问题。 观看我们的网络研讨会“ 打造卓越语音体验的最佳实践 ”,了解您的网站如何为自然语言和语音搜索革命做准备

NLU 和 NLP 有什么区别

原文:https://www.algolia.com/blog/product/what-is-natural-language-understanding-and-how-is-it-different-from-nlp/

自然语言理解,也称为 NLU,是一个术语,指的是计算机如何理解人说的和写的语言。是的,这几乎是重复的,但它值得一提,因为虽然 NLU 的建筑是复杂的,结果可能是不可思议的,但 NLU 的潜在目标是非常清楚的。

为例,据估计每天有 3200 亿封电子邮件发送。这是大量自然语言的创造和消费,如果计算机能够更好地理解它,它可以帮助那些与电子邮件互动的人。NLU 可以确定电子邮件是否是垃圾邮件,电子邮件是否具有高优先级,或者是否有其他相关的电子邮件要与收件人共享。所有这些努力都有助于人们充分利用电子邮件。

NLU 和 NLP 的区别

当然,自然语言理解和自然语言处理或 NLP 之间的区别也是一个一直存在的问题。答案还是在名字里。自然语言处理是关于 处理 自然语言,或者取文本,转换成更容易让计算机使用的片段。一些常见的 NLP 任务有 去除停用词、分词或者拆分复合词 。NLP 还可以识别词类或文本中的重要实体。

回到自然语言理解的用途,我们可以想到其他的例子,比如:

  • 总结新闻文章和博客文章
  • 检测网页的语言以提供翻译
  • 确定销售拜访记录中的关键主题
  • 对推文中表达的情绪进行分类
  • 服务客户服务请求的机器人
  • 为搜索请求提供正确的产品
  • 智能语音助手

这些例子只是自然语言理解的一小部分。你能想到的任何可以从理解自然语言交流中受益的领域都可能是 NLU 的领域。

为什么自然语言理解很重要

自然语言的理解是复杂的,而且看起来像魔术一样,因为自然语言是复杂的。语言在很小的空间里包含了大量的信息。一个明显的例子是句子“ 奖杯放不进棕色的手提箱,因为它太大了。 “你可能马上就明白什么是太大了,但这对一台计算机来说真的很难。

我们不能简单地编写一个程序来检查短语“was too big”并理解该短语指的是第一项。首先,因为这个短语可能改为“太大了”或“太重了”或“太大了”第二,因为有公式表明这种“规则”是不成立的,比如“棕色手提箱因为太大而不适合奖杯。”甚至有一些措辞可能会让人们感到困惑,比如“我没有把奖杯放在棕色的行李箱里,因为它太大了。”是奖杯太大放不下行李箱,还是行李箱太大带不动?

自然语言理解是建立在机器学习之上的

正是因为这个原因,NLU 非常依赖机器学习。机器学习(ML)可以获取大量文本,并随着时间的推移学习模式。这可以用所谓的 分布假说 来解释,该假说认为“通过一个词所结交的朋友”,你可以了解这个词的很多信息以“帽子”这个词为例。一个 ML 模型可能会看到这样的短语,“那个人头上戴着一顶帽子”或者“我戴上帽子是为了遮挡阳光。”如果模型看到了足够多这样的短语,它就开始发现一些模式。然后,抛出这句话,“我戴了一顶棒球帽来遮挡阳光”,它可以感觉到“帽子”和“棒球帽”之间可能有相似之处。加上短语“这个男人头上戴着一顶棒球帽”,相似性会更强。

可以想象,这些 ML 模型需要大量的数据。OpenAI 在 上训练了他们的 GPT-2 模型 15 亿个参数 ,紧接着又在 上训练了 GPT-3 175 亿个参数 。这些数据通常是从网上公开可用的数据中抓取的,但随后会在特定的数据集上进行微调。这种微调允许模型更好地理解给定的数据集。例如,微调可以帮助模型更好地理解医疗数据。

过去十年,计算和机器学习的进步增强了 NLU 的力量和能力。我们可以预期,在未来几年内,NLU 将变得更加强大,并更多地集成到软件中。

有关自然语言理解 应用的更多信息 ,以及了解如何在您的网站或应用中利用 Algolia 的搜索和发现 API, 请联系我们的专家团队

什么是自然语言理解| NLU 定义

原文:https://www.algolia.com/blog/product/what-is-natural-language-understanding/

人和机器通常通过语音或文本界面交换信息。但是,机器能够理解——并对——人的情绪状态、微妙的语气或低调的意图做出适当的反应吗?越来越多的人认为答案是肯定的。支持这种突破性能力的科学被称为自然语言理解(NLU)。

NLU 是被称为自然语言处理(NLP)的更广泛领域的子集,它已经在改变我们与技术的互动方式。

NLP vs NLU

NLP 涉及通过将自然口语或文本语言数据分解成可以分析的更小元素来处理自然口语或文本语言数据。常见的 NLP 任务包括标记化、词性标注、词汇化和词干化。NLP 主要致力于将文本转换成结构化数据。

NLU 是自然语言处理的一个子集,它教会计算机一段文本或口头语言意味着什么。NLU 利用人工智能来识别语言属性,如情感、语义、上下文和意图。它使计算机能够理解语言中的微妙之处和变化。使用 NLU,计算机可以识别人们说同样事情的许多方式。

一键区别

本质上,自然语言处理的是所说或输入的内容,而 NLU 则努力理解其含义。人们写或说的意图会因为拼写错误、断句和发音错误而被扭曲。NLU 通过这些错误来判断用户的意图,即使他们的书面或口头语言有缺陷。

因此,NLU 允许计算机软件和应用程序在响应书面和口头命令时更加准确和有用。对于开发者来说,在设计对话式搜索功能时,考虑 NLP 和 NLU 之间的区别是很重要的,因为它会影响对用户所说和所指的解释的质量。

【NLU】实例及应用

常用的自然语言处理和 NLU 的例子包括:

通过智能个人助理提供客户支持和服务

由 NLU 驱动的聊天机器人实时工作,根据用户意图和基本对话元素立即回答查询。无论是指导用户使用产品、回答支持问题,还是将用户分配给人工客户支持操作员,NLU 聊天机器人都提供了一种有效、高效且经济实惠的方式来实时支持客户。

基于语音的智能个人助理,如 Siri、Cortana 和 Alexa,也受益于 NLU 的进步,能够更好地理解用户请求并提供更个性化的响应。

机器语言翻译

语言翻译——其诱人的前景是让用户用一种语言说话或输入文本,并立即获得另一种语言的准确翻译——一直是应用程序开发者的圣杯。但是实现这个目标的问题就像任何自然语言本身一样复杂和微妙。虽然这一领域远非完美,但 NLU 的应用在最近几年已经促进了巨大的进步。虽然翻译仍然很少是完美的,但它们往往足够准确,以合理的准确度传达复杂的意思。

数据收集与分析

越来越多的公司发现,NLU 解决方案为分析元数据(如客户反馈和产品评论)提供了强大的优势。在这种情况下,NLU 被证明比传统的方法,如手工编码,更加有效和准确。

NLP 和 NLU 通常用于使用 5 种技术从文本中提取信息:命名实体识别、情感分析、文本摘要、方面挖掘和主题建模。一旦使用这些方法从非结构化文本中提取了信息,它就可以立即被机器学习模型使用,以提高它们的准确性和性能。

NLU 商业用例

电子商务

传统的搜索引擎很适合基于关键词的搜索,但对于更复杂的查询,NLU 搜索引擎可以使这个过程更有针对性和回报。假设一个购物者询问“给我看看 500 美元以下的黑色礼服。”该查询定义了产品(连衣裙)、产品类型(黑色)、价格点(低于 500 美元)以及个人品味和偏好(经典)。

使用 Algolia Understand 等工具的 NLU 驱动搜索将此类请求的重要部分分解开来,以准确把握客户想要什么。通过理解更复杂、更细致的搜索请求,NLU 更快地将顾客从浏览转向购买。对于那些确切知道自己想要什么的人来说,NLU 可以节省大量时间。

聊天机器人

聊天机器人可能是 NLU 和自然语言处理技术中最著名和最广泛使用的应用,许多部署它的公司已经获得了丰厚的回报。例如,服装零售商 Asos 使用 Facebook Messenger Chatbox 将订单增加了 300%,并获得了 250%的投资回报率,同时达到了几乎 4 倍多的用户目标。同样,化妆品巨头丝芙兰通过使用 Facebook Messenger Chatbox 将其化妆预约增加了 11%。

电视、流媒体、视频

支持 NLU 的流媒体和点播服务可以帮助观众找到内容,从而显著提高客户满意度和忠诚度,即使他们不确定自己到底在找什么。如果一个观众说:“给我看一些由《阿波罗 13 号》的主要演员主演的有趣的电影,”尽管很模糊,NLU 还是能推断出并生成一个符合所有这些标准的电影列表。可能是一种令人厌倦和沮丧的猜谜搜索体验,反而是一种短暂而富有成效的体验,往往会导致购买或租赁销售。

记者和出版商

通过使用自然语言与内容档案进行交互,NLU 可以极大地帮助记者和出版商从内容深处提取复杂问题的答案。

Algolia Answers 等工具支持自然语言交互,可快速找到现有内容,减少记者撰写报道所需的时间。读者还可以受益于 NLU 驱动的内容访问,这有助于他们在一系列来源之间建立联系,并在几秒钟内找到非常具体的问题的答案。

客户服务与支持

像 Alexa 和 Siri 这样的语言交互平台已经广泛使用 NLU 技术来处理大量的用户请求,从产品搜索到诸如“我该如何退货?”以及“我的保修期有多长?”客户服务和支持应用程序非常适合让 NLU 在制造商和经销商最少参与的情况下提供准确的答案。

NLU 是问答系统的核心,问答系统增强了企业中的语义搜索,并将员工与业务数据、图表、信息和资源联系起来。它也是客户支持应用程序的核心,这些应用程序回答大量、低复杂性的问题,重新路由请求,将用户引向手册或产品,并降低全面的客户服务成本。

博彩

在线游戏已经变得极其复杂,以至于玩家不断地参考规则书和游戏指南来寻找特定问题的答案。此外,游戏通常以极快的速度进行,玩家希望立即得到诸如“我如何在这个游戏中击败 3 级?”这样的竞争焦点问题的答案以及“这个游戏里的魔法药水在哪里可以找到?”

在战斗过程中,玩家可以求助于 NLU 驱动的聊天机器人来获得他们需要的信息,而不是翻阅厚厚的纸质手册,不会错过怪物攻击或射线枪爆发。

阿洛利亚对 NLU 的态度

NLU 和 NLP 已经在 Algolia 的下一代搜索工具的开发和推出中发挥了核心作用。例如:

  • Agolia Understand是一款强大的多功能 NLU 驱动应用,将 NLU 和人工智能引入电子商务搜索,以提高客户参与度,并将访客转化为买家。
  • Algolia Answers旨在理解最具挑战性的自然语言搜索,以更好地对文章进行排序,并从内容深处提取答案,使其成为出版商和记者的一个特别有价值的工具。

有关 NLU 和 NLP 的 Algolia 方法的更多信息,请参见:

神经搜索 101

原文:https://www.algolia.com/blog/ai/what-is-neural-search-and-how-does-it-work/

想到搜索,你首先想到的是什么?

你可能会想象有人在一个网站上,在搜索框中输入一个查询,他们的搜索结果会根据搜索引擎在其网络架构中将关键词与正确的内容进行匹配而出现。毕竟, 否则 搜索引擎如何识别信息,而不是通过即时匹配关键词?

基于关键词的搜索永远是现状。但现在,新技术开始改变搜索应用程序的幕后运作。关键字作为在网上追踪信息的唯一途径的日子正在消逝。现代新的搜索方式正被用于关键字搜索,以创建更准确的搜索结果,并为用户提供更好的搜索体验。

以下是全球公司目前使用的最新发展的搜索方法概要:

传统关键词搜索

用老派的 关键词搜索——你已经认识并喜爱的那种——你肯定会得到大量的搜索结果。诚然,必须提前为搜索引擎创建规则,以便它能够有效地理解数据,并在所有可用的存储库中为您提供最佳信息。根据你的关键词匹配的方式,你的搜索结果可能并不总是超级准确或者按照你的目的排名最优,尽管它们会在眨眼之间为你展示出来,所以你可以方便地点击看起来很好的选择。

【人工智能搜索】

随着人工智能(AI)领域的重大进步,传统的关键词搜索方法和功能一直在稳步发展。大多数搜索引擎用例仍然依赖于关键字匹配方法;其他人则更积极地为新来者让路。为了提高搜索结果的质量,AI-powered search加入了基线关键词搜索。有了人工智能,通过收集和考虑用户活动的数据,搜索结果的相关性得到了提高。AI 搜索利用了一系列现代技术,包括 机器学习自然语言处理 (NLP),以更好地了解每个用户需要定位什么信息。

矢量搜索

许多较新的基于人工智能的搜索引擎整合了 矢量搜索 ,它使用机器学习模型来检测 语义关系

搜索向量是文本的数学表示(这适用于搜索查询和索引信息,如产品信息和网页)。向量让搜索引擎理解输入文本的 上下文 。在将单词转换成向量的过程中,意义被编码。

例如,一个基于关键词的搜索引擎不一定知道“温暖”、“热浪”和“夏天”是相关的。相比之下,基于向量的搜索引擎确实理解这些类型的单词关系,这使它们能够胜过单独的关键字搜索。

由于增加了这个维度,向量成为同义词自动化、documents‍聚类、检测查询中的含义和意图以及搜索结果排名等任务的首选。

与关键词搜索引擎的输出相比,矢量搜索可能速度较慢,扩展性较差,而且价格昂贵。

神经搜索

然后是神经搜索,最热门的新兴搜索方法,准备在搜索界掀起风暴。这听起来像是“有头脑”的东西,事实上,它包含了基于算法组件的奇特、互连节点的“思维”,这些组件被称为 神经网络 (也称为人工神经网络;ANNs)。神经搜索结合了向量的力量,以快速的性能和自学习能力准确地表示数据。

神经搜索的出现是大数据推出的一个成果,没有大数据,搜索引擎就没有足够的信息来进行准确的分析。我们社会积累的可用现代数据集允许神经网络筛选大量信息(其中大部分是非结构化数据),并将其吸收用于广泛的用例。

理解语义

神经搜索有助于提高 语义 理解人们在搜索时想要什么。它利用人工智能来检测人、内容和数据之间的关系,以及用户兴趣与当前和过去的搜索查询之间的联系。

它还可以从数据中学习任意复杂的表示,并利用数据点之间的关系。在理解搜索查询的语义时,这给了它一个优势。

由于能够利用语义和关键词检索方法,对搜索者意图的更好理解转化为提供更相关的结果。

灵活、独立、时刻学习

神经搜索也具有适应性:它可以用于任何类型的数据,包括图像、视频、音频和 3D 信息。例如,表示图像的向量可以包含关于其形状、颜色和内容的信息,这些信息对于将图像与其他图像进行匹配都是非常有用的数据。

神经搜索促进了相关搜索结果的交付,同时降低了对持续管理的需求。例如,它消除了大多数同义词和语言规则的必要性。这意味着网站搜索经理不需要照看和微调他们的搜索功能,添加同义词,制定复杂的搜索规则,提出关键字填充标题,或插入额外的语言包。

你可以从一个训练有素的神经网络开始,而不是依赖于为机器学习模型制定和更新规则,然后模型可以逐渐得到更好的“教育”由于神经搜索基于学习算法,它可以随着时间的推移适应不断变化的现实世界条件(通过微调)。

简而言之,神经搜索就是:

  • 擅长理解搜索查询
  • 强大的
  • 灵活
  • 非常适合在系统训练数据和输入不断变化的情况下使用,例如在 电子商务

神经网络和机器学习

神经网络也被认为是机器学习的一种形式——人工智能(AI)的一个分支,它使用数据和算法来复制人类的学习方式。

有了机器学习,数据会随着时间的推移变得更加精确。例如,如果某人搜索一个主题,然后开始另一个看似相关的搜索,面向机器学习的系统可以假设这两个搜索是相关的,并建议搜索者检查包含这两个主题的材料。随着处理的附加查询的集成,搜索引擎学习并更好地在下一次提供准确的搜索结果。

子集:深度学习

深度学习是机器学习的一个子集(显然,如果你想知道的话,还有一种叫做“浅层学习”的东西)。

深度学习的概念是基于人类对神经网络如何运作的理解而诞生和发展起来的。1943 年,科学家根据人脑中神经网络的运作方式创建了一个计算机模型。他们的目标是利用算法和数学来复制人类的思维过程。

今天,深度学习的计算算法为各种编程方法提供了一个强大的框架。

深度学习和神经网络有什么关系?而它对搜索质量的影响呢?

神经搜索引擎依靠深度学习算法为用户提供准确的搜索结果以及出色的搜索体验。

搜索引擎由索引器、查询处理器、检索算法和排序算法组成。与神经搜索引擎的最大区别是检索部分,它使用机器学习来确定查询和搜索结果之间的相似性度量。这样,神经搜索引擎实际上可以理解概念 ,这可以带来更好的性能,特别是对于关键词/结果对不完全匹配的长尾查询。

深度神经网络

深度学习、神经网络……不可避免地,我们会进入词汤变异的下一个变异: 深度神经网络。

深度神经网络就像它们听起来的那样:注入了更多深度的人工神经网络:在输入和输出层之间插入了额外的层。

深度学习的重点是机器如何利用深度神经网络计算模型进行学习。

由于在基准问题和应用中的优异表现,多层深度神经网络的概念最近已经成为机器学习中非常成功和热门的研究课题。

神经搜索简单来说就是深度神经网络驱动的信息检索。神经搜索利用深度神经网络(DNN)的能力来构建搜索系统的每个组件。

有什么最新的思维?

这总结了各种在线搜索技术的最新进展。

那么,相关搜索下一步将走向何方?回顾一下大约十年前,当全文关键词和向量搜索技术的合并使优化成为可能时,将会蓬勃发展,确保比传统搜索平台或向量搜索目前单独提供的搜索结果更准确。

与此同时,如果你想在下一个十年的某个时候更快地改进你的网站搜索,你仍然可以做一些事情,就像现在的 。T13

检出神经搜索

那是什么东西?看看 Algolia 新收购的技术neural search,它利用矢量搜索与 神经散列 相结合,为您的用户提供快速、准确的搜索结果。它允许我们在一个 单一 API 中结合传统关键字搜索的速度和神经搜索的准确性。

通过这一改变游戏规则的收购,我们现在可以为您的网站或应用程序提供真正的混合搜索,结合全文人工智能关键词搜索和基于向量的语义搜索来处理每个用户查询。是的,你可以在毫秒内为你的用户或客户获得 最先进的搜索 结果,无论规模还是查询吞吐量。

了解如何利用我们先进的搜索算法来提高贵公司的搜索和底线指标,现在就开始吧。联系我们的 团队 ,成功结束您对正确搜索解决方案的搜索!

电子商务营销:科学与艺术

原文:https://www.algolia.com/blog/ecommerce/what-is-online-retail-merchandising-an-introduction/

最近在电子商务网站上购物过吗?如果是这样,你知道一个顺畅的网上购物体验不是可有可无的。如果你打算逗留一会儿,也许会买一件东西,那么对你来说,做任何事情都一定非常容易。

同样,作为一名电子商务商人,你希望你的目标客户享受在你的电子商务商店度过的平稳体验。当他们登陆你的主页或产品详细信息页面时,你希望他们能够专注于你的产品,并开始热情地看伟大的产品图片、阅读产品描述和浏览产品评论。他们的购买之旅不应该是一项复杂的任务,否则你可能会失去他们的兴趣和你可能获得的利润丰厚的零售销售。

在线零售商品展示是打造顺畅购物之旅的关键。他们让购物者探索你的产品,发现他们想要的东西,购买它们,然后也许以后会购买更多,因为第一次的体验是如此愉快( 他们喜欢你的产品)。

一门科学一门艺术

在线零售营销(也称为电子商务营销)与零售网站上的产品战略布局有关。有效的营销既是一门科学也是一门艺术:数据驱动的布局是科学,产品布局是艺术。它显然与传统的实体店现场营销有很大不同——其元素包括橱窗展示和商店设计、彩色标牌、穿着考究的人体模特、奢华的产品展示和试衣间——然而,它仍然符合一些店内原则:漂亮的店面、展示不同类型产品的直观商店布局、强大的品牌以及智能分类。

然而,网上销售更多的是关于而不是你在网站上放产品的地方和你的各种分类页面的外观。它需要对你的潜在客户的购物需求和行为有深入的了解。

作为一门学科,在线零售营销已经受到技术进步、消费者行为变化和电子商务平台功能现代化的影响。随着网上购物变得越来越流行,网上零售商的竞争也越来越激烈,他们需要想出新的方法脱颖而出,吸引顾客,并保持领先地位,包括店内销售 网上销售。

如果利用得好,在线零售营销还可以融合虚拟和实体购物体验,可以通过多种渠道为消费者创造一致、无缝的品牌体验(见证亚马逊的品牌)。在零售商的电子商务业务工具包中,简化 全渠道 是构建引人入胜、个性化的在线零售体验的重要流程,可促进商店销售并激发客户忠诚度。

电子商务营销策略的好处

作为更大的零售营销计划的一部分,在线零售营销是推动品牌成功不可或缺的。当你做对了,你可以收获这两大好处:

更顺畅的客户互动

推动高质量的用户参与和购物体验可以为你的购物者和你的 电子商务网站 带来显著的成功。当你能吸引顾客的欲望,让他们购买他们需要的东西(此外,你可能会向他们推销与他们购物车里的东西相关的商品,或者在结账时向他们交叉销售补充产品),让他们想回来,并把他们变成快乐的长期顾客时,你通常可以预期一些相当丰厚的回报。

通过应用在线零售营销的原则来提供更好的用户体验——从登录页面到产品页面,以及沿途的奖励体验——您还可以提高品牌的声誉。然后,当你的顾客想到你的公司时,他们会记得找到和购买他们想要的东西是多么容易;他们很高兴购买并能够使用该产品。但如果做错了,代价可能会很大: 86%的消费者在两次糟糕的网站体验后很可能会离开一家公司。

收入大增

归结起来,愉快、轻松的网上购物和顾客体验必然会带来更高的转化率。如果顾客问:“我能找到我要找的东西吗?”并且可以肯定地说,收入即将到来。此外,您满意的客户可能会再次进行网上购物,因为根据 Salesforce 的调查,89%的人在获得积极体验后更有可能再次购买。

如何钉钉线上零售商品销售

准备好开始构建或改造你的在线零售营销战略了吗?首先,问自己这些问题:

你的品牌塑造如何?

你的网站品牌告诉你的顾客什么?网上销售空间显然与零售商店完全不同,但理想情况下,它应该与购物者在实体店销售区的体验相似。随着时间的推移,强大的品牌会建立回头客,因为他们知道他们在你的网站上会有什么样的体验,所以他们会毫不犹豫地首先访问你。

你的网站好看吗?

在零售网站上,颜色、标识和风格都是创造吸引顾客的体验的一部分,让顾客感到舒适熟悉。引人入胜的视觉营销技术吸引用户,并促进成功的导航。基于你的团队的编码和设计能力,你可能会遇到一些挑战,但你仍然可以优先提供专业的产品销售体验,让你的顾客满意。

你的搜索栏状态好吗?

你的搜索栏在客户体验中扮演着重要角色。目的是帮助你的客户快速找到他们想要的东西,所以你的搜索栏需要容易定位,并连接到一个强大的搜索引擎,可以几乎实时地提供快速、可预测的网站搜索结果。

你的产品分组好了吗?

就像你在店内展示一样,通过在你的在线商店中为多种商品创建建议的“套件”,你可以为顾客的购物之旅增添便利。例如,如果你是一个极限运动品牌,你可能会把登山夹克、登山靴和攀岩装备归为一类。即使购物者只寻找组合中的一部分,他们也会知道在准备好的时候去哪里买其他的商品(可能是在某些 SKU 降价之后)。做得好的话,直观的产品分组促进了销售,一些在线零售商的平均订单价值(AOV)增长了 20%

个人说明

此外,个性化的互动通过向人们展示他们可能特别喜欢的商品来增强购物之旅。个性化产品推荐和其他以客户为中心的路标由一种 算法 生成,该算法考虑了客户的数据点,如浏览和购买历史。可以肯定地说, 个性化营销 有助于赢得客户体验。个性化有助于确保购物者的快乐,从而获得更高的收入。研究压倒性地证实了这一点。例如,Salesforce 发现,76%的顾客说他们会从提供个性化体验的品牌那里购买,其中 78%的人可能会重复购买。

现在需要结果 ?T37

想要尽快为您的在线购物者提供无缝的用户旅程吗?在 Algolia,我们提供了 工具 ,可以帮助你简化用户体验以增加销售,潜在的大幅增加。

不要只相信我们的话。我们已经让 零售巨头 提供最佳搜索和发现,这带来了一些非常惊人的结果。从改善塞曼的搜索体验到将 Lacoste 的销量提高 150%以上,我们有着辉煌的业绩。这意味着你可以自信地运用我们的销售技巧,将你的电子商务销售提升一个档次。

好奇? 联系我们 让我们开始您的 在线零售营销 改进之旅。

什么是搜索即服务?

原文:https://www.algolia.com/blog/ux/what-is-search-as-a-service/

“搜索即服务”是一种使用软件即服务(SaaS)模式的网站搜索。

通常在 SaaS,许多不同的服务通过云按需提供,现收现付。有了搜索即服务,公司可以更快地创新,因为他们不必担心托管、运营和维护。相反,他们可以专注于完善最终用户体验和优化相关性。搜索即服务提供了一系列好处,包括搜索分析功能、直观的搜索 UI 以及用户可以定期即时获得的创新,因为该服务托管在云上,所以其效率超过了典型的网站搜索。

搜索即服务模式对于帮助企业持续改进网站搜索功能和满足客户需求至关重要,而无需大量的 IT 投资。

搜索即服务的好处

当 43%的网站访问者立即进入搜索框时,出色的现场搜索体验意味着更好的参与度和更多的转化。

网站搜索不仅能快速将用户与他们的需求联系起来,还能通过提高转化率和客户保持率来帮助业务增长。但是最好的搜索即服务解决方案提供的 远不止是一个搜索栏 。它们让探索成为可能,将访问者与他们甚至不知道自己需要的东西联系起来。

搜索与在线体验如此紧密地结合在一起,如果没有它,一个网站很难与之竞争。然而,专有搜索解决方案的构建成本很高,难以维护,并且需要大量的 IT 投资来测试和实施改进。凭借 云架构 的效率,将开发、部署和创新外包给搜索专家通常更容易,而企业则专注于补充营销和产品开发工作。

搜索即服务模式为企业提供了多种优势:

敏捷

搜索即服务解决方案创建了一个更加简化的运营环境。搜索提供商负责保持运行的细节,因此一旦实现,内部团队就不必花费大量时间进行故障排除、测试、解决后勤问题或创建新功能。事实上,搜索即服务为企业提供了自助服务能力,因此 it 可以将更多的时间用于实现组织目标,而将更少的时间用于调整搜索。

拥有/运营成本

有了搜索即服务,企业承担的基础设施和运营成本就会减少。他们不必为搜索工具雇佣专门的运营团队,这简化了技术堆栈,加快了工作完成的速度。这些因素从根本上为开发人员创造了更好的体验。

性能和速度

快速是伟大搜索体验的基础。搜索即服务依赖于可靠的基础设施,如 分布式搜索网络 ,即使在业务增长和客户需求变化的情况下,也能大规模提供闪电般的结果。搜索即服务允许网站以最少的开发投资处理更复杂的搜索需求,如替代语言搜索、允许输入错误、个性化等等。

可靠性和可扩展性

随着业务的增长,搜索功能也必须随之增长和发展。内部搜索解决方案要求开发人员管理系统备份,并解决 网络延迟 、服务器停机和/或搜索无响应的问题。另一方面,搜索即服务允许企业将支持可靠性和可扩展性的基础设施外包给第三方专家。

多通道用途

搜索即服务还允许组织用一个搜索解决方案支持多个渠道,而不是为每个渠道构建新的解决方案。因此,无论用户使用哪种搜索渠道,包括桌面 web、移动 web、移动应用程序和语音,都可以快速获得相关信息。

范围

大多数公司在自己的网站上都有多个部门、资产和数据仓库。一个好的搜索服务工具可以很容易地跨越所有这些,在一个直观、易于理解的界面上给用户一个关于你的所有内容、产品和服务的统一视图。

分析

竞争性搜索即服务解决方案的主要优势之一是能够收集用户行为,并使网站所有者能够根据这些数据采取行动。 网站搜索分析 提供了对各种页面和内容性能的可见性,揭示了哪些资源是最有影响力的,以及为什么。Analytics 还能洞察转化率、关键词、查询、CTR 的有效性等等。这些信息由“搜索即服务提供商”以直观的仪表板形式提供,有助于做出有关产品和营销策略的更大决策。通常,公司可以发现一些未满足的需求,这些需求代表着巨大的商机。

定制&灵活性

有了强大的搜索服务提供商,公司可以让业务目标和业务特定需求驱动搜索配置和搜索 UI 设计。定制确保搜索与业务案例和挑战最匹配。公司可以调整排名因素、优先级和其他元素,以不断改进搜索工具来满足客户的需求。

个性化

个性化是 未来的搜索 。搜索即服务提供商拥有数据、分析和基础设施来支持大规模个性化,这是内部解决方案和通用搜索插件通常无法做到的。

用户越觉得搜索结果迎合他们的需求,就越有机会交叉销售和追加销售相关内容和产品。组织可以同时针对多种语言进行优化,而不是一次构建一种语言,然后再逐步构建另一种语言。每次,他们还可以针对变化、复数和单数情况以及其他相关因素进行优化,以提供相关的结果。

视觉设计

当你 构建自己的搜索功能 时,你还得投资工具的 UX 和视觉设计。通过搜索即服务,搜索提供商提供了与您的网站无缝协作的视觉设计和模板。在该工具中,您可以调整这些视觉效果并测试不同的图形元素,以获得最吸引人的视觉布局。您可以从与您的搜索相互影响的不同设计元素中进行选择,如分页、过滤器和方面,以确保客户拥有直观、顺畅的体验。

功能

效率是有效功能的结果。作为服务提供商的搜索在后端功能上投入了大量资金——从及时的 索引 到对查询的快速响应,再到 联合搜索——因此您可以专注于调整和优化自己的搜索结果。虽然默认的 CMS 或电子商务平台搜索结果是通用的,通常是无优先级的列表,但优化的搜索即服务解决方案为每个网站访问者提供了高度相关的定制结果。

搜索即服务如何运作

一旦一家公司选择了 他们首选的网站搜索解决方案 ,就该让服务在网站上运行了。要实现搜索即服务解决方案,客户首先需要让云提供商能够访问格式正确的数据。

供应商通过其搜索引擎处理这些数据,因此客户可以通过 API 提供的软件访问搜索结果。该处理包括创建索引,或者指示内容包含什么的标记,其可被搜索引擎访问。当用户查询或在搜索栏中输入单词开始搜索时,该引擎会筛选索引以快速向用户提供结果。那些搜索结果根据与查询的相关性 被分类为

搜索供应商维护所需的硬件、计算、内存和处理能力。对于其他解决方案,客户负责购买和维护基础架构,如服务器、操作系统和补丁程序。将搜索作为服务的 API 方法不需要这些投资。

谁需要搜索即服务?

任何拥有可搜索内容或产品的网站都可以从“搜索即服务”中受益。

搜索即服务在许多不同的行业中尤其有用。在媒体或新闻业,每天或每周都会产生大量的新内容,因此访问者很难找到最相关的信息。在零售和电子商务中,不断变化和/或扩展的产品目录可能很难让用户浏览。在许多情况下,组织依赖多个搜索引擎来搜索不同的内容类型,这增加了开支,给内部开发团队带来压力,并导致用户体验不佳。

搜索即服务有助于缓解这些问题。通过一个工具,公司可以帮助用户找到广泛的内容,从存档的文章到新的视频,再到最新的调查报告。由于频繁的网站索引,结果会不断刷新,媒体网站可以运行分析来查看哪些内容是最重要的,哪些内容缺口需要填补。

和搜索即服务

搜索即服务是一种云产品,让用户、开发者和企业的搜索变得更加容易。

Algolia 是尖端的搜索即服务,旨在规模化运作。我们在高可用性架构、持续创新和个性化体验方面的投资有助于您随时为每位用户提供出色的搜索体验。

了解更多关于 购买与构建您的搜索工具观看演示 了解 Algolia 的实际应用!

在浏览、发现和推荐的时代,搜索相关性是什么?

原文:https://www.algolia.com/blog/product/what-is-search-relevance-in-the-era-of-browsing-discovery-and-recommendations/

良好的搜索相关性是指找到正确的信息,以及 将客户和在线业务置于平等的地位。搜索相关性不仅试图满足顾客在他们的搜索查询中表达的 意图 ,它还使在线商家能够最有利地呈现他们的产品和服务,而不打破他们的顾客的相关性期望。

在本文中,我们将看到这种更广义的搜索相关性如何扩展到包括 浏览发现 ,这些活动不一定需要从搜索框开始。

有什么关联?或者更好地说,相关性试图完成什么?

相关性算法试图(1)将查询文本与一些潜在内容进行匹配,同时(2)预测并满足客户和企业的需求。这个定义是一个相当好的总结,在某些方面很简单,但承载着大量未言明的潜力和力量——或复杂性,这取决于你看到的是半满还是半空。

推/拉的关联性

如果我们把 搜索 关联简化为关于 寻找信息 ,那么更一般意义上的 关联 可以指除此之外的东西。我们的文章对 搜索和浏览 讨论了 拉动推送 内容的优点,即搜索和浏览。用户 在主动搜索并期望找到合适信息的时候拉 内容。一个业务 在用户搜索(或浏览)公司的各种数字界面时,当它主动建议或浮出信息时,就会推送 内容。

我们来对比一下两者:

| 拉取/搜索内容 | 推送/浏览内容 |
|

  • 将字母、单词和短语与内容进行匹配,并过滤以向下钻取
  • 权衡某场比赛的强弱(下面讨论)
  • 结果排名:根据相关性对结果进行排序(首先显示最强的匹配)
  • 添加自定义排名,根据受欢迎程度、利润或其他此类业务指标以及业务需求进行排序

|

  • 通过营销活动推广您的产品和服务
  • 管理内容和媒体
  • 使用用户资料个性化搜索结果
  • 根据快速变化的市场趋势和用户行为动态调整结果
  • 推荐相关和“经常一起购买”的商品
  • 还有更多

|

拉和推是一个整体的两个部分。你不能真的把它们分开。 适时推送合适的信息 (浏览)与一个用户 在搜索 (搜索)时拉取合适的内容没有太大区别。换句话说,它们都是为了满足用户意图而设计的——尽管方式不同。虽然本文更侧重于拉而不是推(搜索而不是浏览和发现),但在实践中,它们从未分开;他们总是作为一个完整的整体行动。我们称这个完整的画面为 关联循环

本文的第一部分着重于基本的搜索算法。有一篇配套文章深入探讨了搜索引擎如何实现最佳搜索相关性。在文章的最后,我们提供了关于循环的第二部分,浏览/推送功能的进一步阅读的链接。

关联循环解释

技术相关性循环——搜索引擎如何管理相关性:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

功能关联循环——用户对关联的期望:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

从两幅图中可以看出, 关联沿着一个循环 行进,这个循环包括拉和推信息。完整的搜索体验始于搜索查询,其中搜索引擎应用查找和排序算法来返回一组相关的搜索结果。然后,搜索引擎通过商品销售、内容管理、人工智能驱动的个性化和推荐来增强搜索结果——所有这些都取决于您如何在系统中配置这些功能。

好的搜索相关性——看到就知道

一个 衡量 好的相关性就是最佳匹配出现在你搜索结果的第一页。但那真的没有什么关联 就是

搜索相关性更恰当的定义是:无论什么 最佳 匹配一个搜索查询。但是“最佳匹配”是什么意思呢?是某种抽象的相关性分数吗?还是随便什么 感觉 对?如:如果它 感觉 像是匹配查询的结果,或者 看起来就是我要找的 ,那么它的相关

可惜,这有点太主观了。如果我输入甲虫,看到很多看起来很吓人的虫子,引擎会显示相关的搜索结果吗?是的——即使我在寻找著名的长发音乐家,披头士。

其实,什么 看似 相关和什么 实际上 相关是有区别的。好的相关性本身没有意图。只有查询中的单词才重要。

然而,最好的搜索引擎也能读懂字里行间的意思。如果你在卖音乐,查询“甲壳虫”应该可以找到甲壳虫乐队的音乐——这可以通过打字错误容忍和同义词等技术来实现。

再假设你既卖甲壳虫又卖甲壳虫。在这种情况下,两个其他方面的相关性可能会派上用场:

  • 过滤 ,可以按类别过滤(虫子 vs .音乐)
  • 用户界面 ,可以显示一组 查询建议 ,比如“甲壳虫 bugs”和“甲壳虫音乐”,或者多个结果——一边是音乐,另一边是 bugs

搜索结果页面还有许多其他的用户界面,例如分类页面和重定向。这些技术有很多,目标是满足搜索者的意图和客户体验的所有可能性。

但仍然,有什么关联?相关性既有主观的也有客观的

考虑到以上所有情况,有一件事(很不幸)是真的:你认为相关的可能 没有 显示在第 1 页上。这可能是一种令人沮丧的用户体验,应该尽可能避免。然而,在某些情况下,比如音乐,总会有强烈的主观因素。

例如:对于查询“著名摇滚团体”,我们是否应该在第 1 页显示滚石乐队?结果应该只显示英美摇滚歌手吗?其他国家也在 60 年代摇摆不定。再说了,一个搜索引擎是怎么知道哪些音乐团体“出名”的?

另一个常见的问题是如何解决平局?例如,“bea”同样可以培养出像 Beans on Toast 和 Joe“Bean”Esposito 这样的艺术家,他们拥有忠实的观众,但人数较少。对此有解决方案(将结果分成不同的类别,或者限制同一艺术家的结果数量)。但是对这个问题最重要的“修复”是 as-you-type,instant-results 界面,在这里搜索结果会立即出现在网页上作为人的类型。有了即时结果,乔“豆子”埃斯波西托的粉丝可以继续输入,直到他们的艺术家出现。这种额外的输入很好,因为今天的用户乐于更精确地找到不太知名的商品。

幸运的是,并不是每个话题都有如此强烈的主观因素。如果有人在寻找“合适”的鞋子,一个好的搜索引擎应该引导用户找到最佳答案。这是通过 构造 鞋子数据来实现的。

结构化与非结构化信息

获得恰当的相关性并非易事。谷歌搜索或任何网络搜索引擎都必须让数十亿人正确筛选数万亿条(主要是)无组织的信息。

在小范围内,比如说像亚马逊这样的在线市场,搜索引擎可以更加稳定。亚马逊 知道 它的内容,知道它的客户经常使用的查询。它因此可以 构造 其内容围绕这一知识展开。

这就是像 Algolia 这样的搜索引擎的用武之地,它允许你根据你对内容的了解来定制你的搜索。Algolia 的搜索引擎不知道它搜索什么。它的 algorothms 可以搜索电影、电子商务网站上的产品、博客、医院和客户记录、Salesforce 数据集、报纸文章和其他用例。你需要以最能代表主题的方式来组织你的内容。

我们将在本文的姊妹篇中讨论这个问题。但是有必要快速了解一下构建数据集意味着什么。

创建结构化, 可搜索 内容

这里有一个很好的例子来说明我们所说的结构。一只鞋有:

  • 名称
  • 描述
  • 品牌
  • 流派
  • 颜色
  • 价格
  • 图片
  • 人气

Algolia 的相关性算法完全依赖于你如何让搜索引擎知道它在搜索什么信息。如上所述,它从创建有价值的数据集开始。但是,您还需要告诉引擎这些数据的含义。听起来很复杂,但其实很直观:

  • 你告诉引擎“名字”、“颜色”和“品牌”对查找记录很重要,而不是“形象”或“受欢迎程度”。
  • 您告诉它根据匹配的 质量 对结果进行排序,同时考虑输入错误、精确或部分匹配以及许多其他细节。例如,查询“Bee”应该在 Bee 之前显示 Bee,因为 Bee 是精确的单词匹配。同一查询还应该显示"Beetles " before "Beatles ",因为错别字匹配不如非错别字匹配好。
  • 你可以 自定义 带有商业指标的订单,如人气、畅销书、最受听次数、点赞数和利润率。例如,显示首先匹配的所有热门项目。
  • 您可以添加过滤器、同义词和其他此类基于逻辑和语言的方法。
  • 最后,你可以添加关键功能,如销售、策展、人工智能、自然语言处理、机器学习、AB 测试和分析,以实现相关性优化(换句话说,浏览和发现技术可以启动 推送 相关内容)。

什么是“最佳搭配”?相关性如何衡量匹配的优势和劣势

我们经常使用“最佳匹配”、“高质量匹配”和“排名”这些术语。他们的意思是这样的。我们说“相关性”,往往是指“ 文本 相关性”,是指搜索引擎如何将用户查询的词与内容进行比较,返回匹配结果。但我们也指 排名 ,这是关于按最佳匹配对结果进行排序,通常被称为“按相关性排序”。

因此,如果一个项目与搜索框中的词匹配,搜索引擎会确定匹配是强还是弱。我们已经看到上面用查询“蜜蜂”,其中 蜜蜂蜜蜂 tle 强。

最佳的比赛是最强的比赛。

为了说明这一点,想象一个使用最简单的相关性形式——逐字母比较——的搜索体验。

这里有四句名言

  1. “要 是, 还是不要: 就是这个问题”(作者威廉·莎士比亚)
  2. “那是 成为 的时代,那是最坏的时代”(作者狄更斯)
  3. “不要问你的国家能为你做什么——问问你能为你的国家做什么”(美国总统约翰·肯尼迪)
    *** “很长一段时间我习惯于去 d 早”(作者马赛尔·普鲁斯特)**

**文本匹配可以是精确的,也可以是部分的。搜索“be”“匹配 3 条记录的文本:记录 1(“be”)、记录 2(“beST”)、记录 4(“bed”)。在本例中,记录 1 是最强的,因为它是完全匹配的,而记录 2 和 4 较弱,因为它们只是部分匹配。

继续这个例子,如果我们允许 1 个单词的错别字,那么搜索“ that ”将找到记录 1 和 3,其中记录 1(“that”)比记录 3(“what”)强,这与查询相差 1 个字母。

超越搜索——浏览和发现

既然搜索引擎已经找到了最好的记录,并根据最匹配的记录进行排序,那么是时候继续前进了。此时,企业可以考虑根据当前的促销活动或行业趋势添加或重新排序记录。它还可以将用户重定向到为他们感兴趣的项目或类别设计的页面。它还可以个性化结果,支持用户喜欢的项目(通过分析、人工智能、自然语言处理和机器学习学习)。最后,它还可以在搜索结果旁边开始推荐相关项目。我们在博客的其他地方讨论了这些。比如:

结论——各种关联

我们将以一个新的搜索示例结束。取一个相当合理的查询:“跳舞用的深色尖头鞋”。

如前所述,相关性不仅始于查询,也始于你如何组织内容。因此,“尖头舞鞋”查询的结果来自于您的数据结构如何回答这些问题:

  • 我卖什么样的鞋(颜色、形状、品牌等。)?
  • 普通用户输入什么搜索词?
  • 我的顾客想要和寻找什么样的鞋子?
  • 什么鞋最流行或最畅销?
  • 我的目标群体是什么(儿童、成人、青少年)?
  • 我应该添加同义词吗(例如,“尖尖的”=“尖锐的”,“跳舞的”=“舞蹈俱乐部”)
  • 我应该为颜色和流派添加滤镜吗?

然后坐下来放松,知道那些尖头舞鞋会升到顶端。**

什么是搜索相关性?

原文:https://www.algolia.com/blog/product/what-is-search-relevance/

搜索相关性是对搜索查询和搜索结果之间的关系的准确性的度量。

网络用户期望很高。由于像谷歌、亚马逊和网飞这样的网站设置了高标准,他们期望准确、相关和快速的结果。然而,现实是,许多网站没有优化的结果页面,这些页面能够理解用户的意图并轻松地满足他们的需求。

如果你曾经搜索过一个网站,却只能看到一堆无用的、不相关的结果,那么你应该知道你的用户可能会有什么感受:沮丧并倾向于去竞争对手的网站寻找结果。搜索相关性是用户体验不可或缺的一部分。

网站所有者可以微调他们的搜索相关性,以对用户最有帮助的方式排列搜索结果。这可以基于多个因素,例如搜索意图、业务优先级、文本相关性、拼写准确性、用户的地理位置或搜索内容中关键词的接近度。

微调搜索相关性以获得准确性

相关性可能很难确定,因为它高度依赖于上下文和许多不断变化的变量。例如,网站的类型很重要:电子商务网站和学术网站的排序方式是不同的。搜索者的类型也很重要。收藏家和新手会有不同的意图和搜索技巧。最后,不同的人会用不同的词来表达他们在寻找什么,即使是完全相同的查询。结果排名公式必须满足这些不同的需求。

当用户在电子商务网站上输入类似“折扣”的查询时,他们希望返回符合查询条件的特定记录子集。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

When a user enters a query like “discount” on an ecommerce site they want a specific subset of records that match the query criteria to be returned.

为什么搜索相关性很重要?

优化 搜索相关性 是用户体验设计中一个极其重要却又经常被忽视的方面。研究显示,43%的网站访问者会立即进入搜索栏,而这些搜索者转化的可能性是普通人的 2-3 倍。当用户得到符合他们的查询和兴趣的结果时,他们会更满意,更投入,甚至更有可能转化。因此,一个好的 UX 设计应该鼓励用户从搜索栏开始,浏览搜索结果。

此外,现代在线用户对网站的可用性有很高的期望,因此速度、易用性和设计的简单性是客户如何看待一个品牌的重要因素。

搜索相关性简史

搜索相关性的历史可以追溯到互联网的早期,当时研究人员试图找到信息检索的方法来管理每天快速增长的内容。这很快导致了搜索引擎的发明。

搜索引擎

早期的搜索引擎和协议,如 1990 年由麦吉尔大学的一名研究生创建的 Archie 和 1991 年由明尼苏达大学的研究人员创建的 Gopher,是现代搜索相关性系统发展的重要里程碑。他们使学者能够使用搜索词搜索他们通过互联网连接的其他机构的文件系统。

然而,这些早期的搜索引擎仍然非常技术性,要求用户具有先进的计算机知识和低级的互联网概念。与此同时,就在几年后的 1993 年,随着数百个网站开始上线,万维网开始蓬勃发展,引发了全新的搜索系统浪潮。

早期网络搜索引擎

很快就出现了网络爬虫,它能自动加载和更新搜索引擎索引中的网页,允许搜索更多的内容。

网络搜索引擎,如 1993 年的 Excite 和 1994 年的 Yahoo,因其易用性而迅速流行起来。它们甚至包括一些基本的统计模型,旨在理解用户查询以及它们与内容的关系。

这些新颖的早期系统采用了一种可行但有限的方法来排列与用户最相关的搜索结果。他们根据关键词在网页中出现的次数进行相关性排名,但是他们没有考虑任何其他标准来评估网页的质量。

然后改变游戏规则的谷歌搜索框出现了。谷歌于 1998 年 9 月 4 日在加利福尼亚州门洛帕克成立,通过建立其尖端的搜索引擎技术,极大地提高了搜索的相关性。2000 年代,谷歌使用更新、更强大的机器学习模型改进了搜索算法,提供了更好的相关性和预测性搜索功能,如自动完成和即时搜索。

测量相关文档搜索

随着网站数量的增加,在特定网站和数据库中搜索相关文档的需求也在增长。文档搜索是我们今天网站搜索方式的重要先驱。

传统的排名系统通常会查看文档中关键词的频率来预测它们的相关性。例如,一种称为 TF-IDF 的经典算法会查看关键词在相应文档中出现的次数(术语频率)以及关键词在存储库中所有其他文档中出现的次数(逆文档频率)。后一种分析有助于过滤掉通常是噪音的常见单词,如介词。

虽然 TF-IDF 和其他此类早期相关性方法擅长通用文档搜索,但它们未能利用大多数网站包含的附加结构和元数据。现代内容包含标题、描述、类别、标签和更多基于关键字的信息,可用于解释网站内容和提高搜索相关性。

随着时间的推移,搜索引擎公司已经开发出 TF-IDF 的替代方案,例如,通过更多地依赖关键字算法而不是统计。对于我们自己的搜索引擎,我们开发了一个平局决胜和自定义排名系统,使企业更容易看到引擎盖下发生的事情,这使他们能够根据自己的需求定制相关性。

随着更新的语义搜索功能的出现,也有更复杂的排名质量模型来对搜索相关性进行评分,包括 nDCG,归一化的折扣累积增益,它可以确定一组查询结果对于特定查询的排序情况之间的相似性。分数越高,相关度越高。我们增加了神经技术和向量搜索的评分,以扩展我们的关键字搜索对更多用例的相关性。还有其他方法,如 MRR(平均倒数排名)和 MAP(平均平均精度),每种方法都有自己的优缺点。

为了获得更好的相关性,搜索索引中记录的质量很重要。关键字和语义搜索的好坏取决于数据的质量,这就是为什么数据清理可以处理缺失值或有噪声的数据,构建来自不同来源的数据集以便更好地进行分析,以及改进标题、描述、标签、标题和元数据等内容可以极大地影响搜索质量分数。

实现搜索结果提升和优化

如今,随着网站内容和产品供应的增长,优化搜索相关性是单个网站搜索引擎的主要考虑因素。企业生产自己的相关性需要考虑到他们的具体业务需求,使他们的搜索有用。

例如,一个电子商务品牌可能拥有数千种不同的产品和不同人口统计的客户。因此,当客户搜索产品时,内部搜索引擎必须能够提供不仅与查询相关,而且与特定用户上下文相关的结果。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

今天的搜索引擎还必须知道如何处理同义词、错别字、多词查询,甚至是问题。搜索引擎使用自然语言处理(NLP)来帮助阅读、理解和理解人类语言。

此外,营销人员可能希望推销与其店内商品类似的季节性商品 商品 商品,或者企业经营者可能希望推销利润更高的商品。因此,相关的搜索系统还必须能够将这些因素考虑在内,并提供可以随着时间的推移进行调整以满足这些需求的自定义排名。

然而,这些算法中的许多仍然很笨拙。为了改善这一点,一些算法 考虑了 匹配属性的重要性和关键词的接近度。通过这样做,搜索结果比通用搜索算法更有可能与用户相关。

最近,为了提高相关性,搜索设计者一直致力于构建更多的个性化和情境化。这包括像机器学习和自然语言处理这样的技术,以实现更多的对话式搜索,跟踪用户搜索和浏览历史以允许对查询进行自定义解释,以及对网页进行自动标记和分类,以便在比简单的文本关键字更高的层次上理解内容。

用 Algolia 微调你的搜索相关性

优化网站的搜索相关性是一个复杂且持续的过程。它不仅需要提供与用户查询相匹配的结果,还需要为用户提供个性化的结果,同时满足您自己特定的业务需求。此外,随着用户越来越多地转向支持语音的设备和数字助理,企业将不得不找出如何提供一种新型的界面,能够与用户自然交谈。

为了向您的客户提供所有这些功能,您需要一个搜索即服务合作伙伴,提供所有行业最佳实践和现成的最先进功能。更好的相关性对于一个网站或内联网上的客户是获得好的搜索体验还是坏的搜索体验有着巨大的影响。

什么是 searchandising?

原文:https://www.algolia.com/blog/ux/what-is-searchandising/

在实体零售销售中,店主和经理可以安排商店的库存和布局,以促销某些商品和满足顾客需求。这个过程在电子商务商店中同样重要,在电子商务商店中,产品的组织极大地影响了客户的体验和与品牌的互动。

通过 searchandising,企业可以将实体商品销售的好处带到电子商务商店,引导客户在网站上进行一次引人入胜的旅程。

Searchandising,也称为 searchandizing 或 search merchandising,是以推动电子商务商店销售、转化和 KPI 的方式管理搜索结果的过程。

Searchandising 允许产品所有者、营销人员、商家和网站所有者推广产品,以符合业务目标的方式组织搜索结果,甚至跟踪人们如何与产品互动。搜索是一个迭代和持续的过程,可以不断改进,最终推动更多的销售。

为什么 searchandising 很重要?

在电子商务网站上,近 30%的用户直接进入搜索框。这些搜索者已知转换 比正常被动浏览器高 5-6 倍 。搜索代表着如此巨大的机会,为什么没有更多的电子商务网站投资搜索和设计呢?

老实说,对许多公司来说,搜索是一个黑匣子。企业主和网站经营者通常对搜索没有什么所有权,这意味着他们:

  • 不知道为什么产品在给定搜索中排名靠前
  • 靠开发者做排名变化
  • 努力获取关于 搜索特定结果的良好数据 做出决策并迭代

借助强大的 搜索即服务 解决方案,然而,企业主和营销人员可以接管搜索的所有权。他们可以微调自己的相关性规则,在试运行环境中测试变更,对生产中的变更运行 A/B 测试 ,并监控一段时间后的结果,以确定成功与否并确定未来开发的优先级。

通过加强对网站搜索的控制,企业也可以在比实体店更大的范围内进行网上销售。(想想 10,000 件产品,而不仅仅是 10 条过道。)通过帮助客户准确找到他们想要的东西并快速购买,这提供了更好的用户体验。

searchandising 如何工作

Searchandising 允许您快速调整搜索引擎的相关性,以适应您的业务需求、营销活动、关键绩效指标和其他特定需求。Searchandising 的工作原理是在网站内部搜索引擎的基本相关性规则上覆盖特定业务的规则。这使得公司能够通过针对给定的搜索项推广、增加和/或隐藏产品来动态地适应业务目标。

这还可以更进一步。高级搜索和设计利用搜索分析数据进一步细化搜索结果。您可以检测用户意图和趋势,例如表现不佳的查询和趋势主题。然后你可以推销你的搜索查询和关键词,以确保你引导你的用户找到他们关心的东西。

网站搜索功能,如自动完成、最近搜索、搜索建议和相关查询,都可以用来推销和推广产品。

搜索策略

你可以采取一些行动来利用搜索和设计:

  1. 个性化 。通过向用户证明上下文相关和 个人相关的 内容,可以增加用户点击通过和转化的几率。
  2. 使用搜索规则 。手动提升、隐藏和排序搜索结果可以让您根据一年中的时间、业务目标和其他 KPI 向用户推广某些类型的产品。
  3. 推荐产品 。向用户展示相关产品并不一定要在产品或收藏页面上。在搜索中直接这样做可以提供直观的用户体验,并为交叉销售和追加销售提供机会
  4. 开展搜索活动。通过在搜索结果页面上添加展示广告和推广横幅,您可以轻松推广产品、内容和其他重要资源。
  5. 轨道数据。销售和搜索是反复和持续的过程。监控用户互动以决定如何调整搜索相关性和产品供应。

为你的电子商务网站搜索和定位

有效、持续的搜索和设计要求非技术用户能够快速、轻松地测试网站搜索的变化。要做到这一点,您需要一个搜索即服务解决方案,它对于个性化的高级搜索来说足够强大,但对于任何人来说都足够容易监控结果和测试增强功能。

看看超越框框的搜索 ”看看搜索如何改善客户体验,推动电子商务网站的转化。

什么是站点搜索?

原文:https://www.algolia.com/blog/product/what-is-site-search/

站点搜索是一项功能,它使用户能够快速、有针对性地搜索给定网站的内容或产品目录。一个伟大的网站搜索功能是为特定的网站量身定做的。一个优秀的网站搜索不仅会不断地对网站进行索引,以确保最新的内容易于访问,它还会引导用户浏览网站内容,帮助他们发现他们可能甚至不知道自己感兴趣的内容。最好的网站搜索产品让用户高兴,因为它允许他们快速连接到他们需要的内容,同时获取关于访问者最感兴趣的内容和产品的有价值的数据。

为什么站点搜索很重要?

像谷歌这样的搜索网站以及像亚马逊和 YouTube 这样以搜索为中心的网站是我们互联网体验不可或缺的一部分。因此,毫不奇怪,当搜索单个网站的产品、内容或信息时,访问者希望获得与这些网站相同的便捷性和速度。

搜索栏是网站功能和设计的重要组成部分,对于我们大多数人来说,使用没有搜索栏的网站会显得——嗯,很奇怪。在设计网站时,搜索栏是显而易见的,但是真正有用的网站搜索不仅仅是有一个搜索栏。

研究表明,使用搜索的访问者找到他们正在寻找的东西并转化为客户或潜在客户的可能性是仅仅浏览的用户的 3 倍。搜索也是访问者告诉你他们在找什么的最好方式,并给你机会根据访问者的具体需求来定制网站。

强大的网站搜索可以对你的网站产生强大的影响:

提升用户体验

一个网站可以有令人敬畏的内容或非凡的产品,但如果用户找不到,他们很可能会感到沮丧。出色的网站搜索体验将快速相关的搜索结果与出色的搜索后发现体验结合在一起,允许用户过滤结果、浏览不同类别的内容,甚至推荐相关的热门搜索。易发现性导致访问者和你的内容之间积极和持续的互动。因此,你应该考虑网站搜索对用户体验(UX)的重要性,就像美学和功能性一样。

降低跳出率

来自 KISSmetrics 的研究表明,12%的网站访问者在不满意的搜索后会离开并选择竞争对手的网站。不要赶走你的客人!如果你提供一种奇妙的搜索体验,你的网站可以成为访问者空手离开竞争对手网站后转向的网站。

升压转换

当你帮助访问者第一次找到他们想要的东西时,这对销售和参与度有着巨大的影响。事实上,根据 Forrester research 的研究,多达 43%的访问者在访问一个网站时会立即将 导航到搜索栏。

以客户为中心的网站搜索对企业绩效有着有益的下游影响。一个专用的网站搜索解决方案允许企业保持对网站上可搜索和推广内容的控制,并为用户提供有用的建议。网站搜索对于一个网站的日常健康和运营是如此重要,以至于它不应该被当作一个事后的想法。

站点搜索对你的企业的好处

那么,这种以用户为中心的方法是如何帮助提振业务的呢?你可以使用强大的搜索功能,以几种方式实现更健康的底线:

让用户更好地了解你的产品、服务或内容

你的访问者发现你网站上提供的东西越多,他们获得的知识就越多。这种知识可以很容易地转化为行动,尤其是如果这是游客所需要的。一个好的网站搜索有助于一个简单的发现过程。而自然发现用来抓住并保持用户的注意力。

分析并利用有价值的数据

用户每次搜索你的网站,都会产生有价值的 用户意图数据。 用户在用自己的话告诉你他们的欲望 借助网站搜索分析功能,你可以做出如下战略性举措:

  • 优化你的结果: 区分相关性的优先级有助于减少用户筛选结果的时间。一旦你评估了趋势和你自己的商业目标,一个强大的网站搜索将允许你根据诸如受欢迎程度或 Twitter 喜欢或转发等属性来微调相关性,以确保 最相关的结果 对网站用户排名最高。
  • 填补内容空白: 访问者可能正在搜索你甚至还没有考虑过要写的内容主题。
  • 更了解你的用户: 谁在搜索你的产品?他们住在哪里?哪些产品在哪些月份最受欢迎? 网站搜索分析有助于市场细分。

提升你的 SEO 力度

有效的网站搜索提高了 你的网站的整体 UX,这是谷歌在对网站进行排名时看重的东西。网站搜索还需要对内容进行逻辑的、层次化的组织,这有助于像谷歌这样的搜索引擎理解你的核心主题和产品(以及它们是如何组合在一起的)。

另外,如果你的访问者经常在你的网站上搜索一个单词或短语,他们可能也在谷歌上搜索这个关键词。因此,当你在你的网站上发现搜索率很高的词时,你可以制定策略来解决这些关键词 背后的 用户意图。

缓解成长的烦恼

网站的扩张,包括增加日常内容和/或新的产品线,实际上会损害 UX。 当一个网站显著增长时,定位一个确切的项目就像在不断增长的干草堆中寻找一根针。但是有了正确的网站搜索,对于访问者来说,大海捞针并不是一个负担。他们可以很容易地找到他们需要的东西,并获得其他相关内容的建议,以继续他们的旅程。

哪些类型的网站应该具备网站搜索功能?

内部站点搜索可以让任何网站或技术平台更容易使用。积极的网站搜索体验会带来更多的回头客、更多的订阅、更强的品牌形象和更少的用户投诉。

然而,这里有一些类型的网站可能会从有效的网站搜索中受益最多:

电子商务网站

当购物者知道他们在寻找什么时,他们不会想在众多产品类别中寻找。你也不希望他们这样做,因为浪费时间就等于失去客户。因此,在任何时候,尤其是在 最繁忙的购物季节, 给你的访客最好的网上购物体验是至关重要的。帮助他们轻松搜索、查找和购买,并看到投资回报的增加。

媒体网站

媒体网站上的内容不断扩大和变化。读者和视频观看者很容易在这样一个内容丰富的环境中迷失方向。网站搜索可以帮助他们找到它,引导他们到感兴趣的新的相关主题,并延长他们在网站上停留的时间。

SaaS 公司

软件即服务(SaaS)平台允许客户搜索他们创建的数据,可以极大地增强用户体验。而且随着每一家 SaaS 公司现在平均面临几乎 10 个竞争对手 ,提供一个比竞争对手更好的 UX 比以往任何时候都重要。

受益于内部网站搜索的其他类型的高搜索网站包括网络论坛、维基和知识库。 医疗保健和金融行业 的企业也能从顺畅的网站搜索中受益匪浅。

如何选择合适的内部站点搜索

不是所有的网站搜索平台都是平等的,价格只是众多因素中的一个。寻找一个平台,提供您需要的所有功能,以提供高级搜索体验——无论是现在还是未来,随着您的站点的增长。这里有几个要寻找的特征。T34

  • 分析: 没有具备分析能力的站点搜索,很多站点搜索的好处都无法实现。确保你选择的平台能够让你了解你的访问者,并不断完善你的网站。
  • 定制: 最好的网站搜索平台可以让你将访问者的个人资料纳入排名策略。然后,该平台可以 根据访问者之前的搜索和网站行为,对他们看到的结果 进行个性化处理。
  • 功能: 网站搜索功能应该能够可靠、快速、轻松地执行,并具有打字错误容忍、建议、过滤器、同义词和多语言选项等功能。
  • 方便开发者: 选择一个平台,这个平台是为了与你的开发者合作而设计的,而不是与他们作对。它的实现和维护应该是直观的(很可能甚至可以被很少或没有编码技能的团队访问),与许多集成一起工作,提供 24/7 支持,并有一个活跃的开发人员社区。实现一个网站搜索平台应该是一个令人兴奋的里程碑,而不是一个痛苦。
  • 安全性: 您的内部搜索平台应该提供 SOC 2 和 SOC 3 合规性、API 密钥、集群隔离和多租户架构等安全特性。
  • 可靠性: 有了网站搜索这样一个客户体验不可或缺的组成部分,你就无法承受停机或不可靠的解决方案。寻找建立在 可靠基础设施上的可信解决方案 ,在问题影响到你之前,让团队专门处理问题。

看看 Algolia 如何改善你的站点搜索

像 Lacoste、Stripe、Twitch 和 Birchbox 这样的世界知名品牌都把 Algolia 作为他们网站搜索引擎的首选。其强大的搜索功能、分析、安全性和易用性值得信赖,它是一个开箱即用的解决方案,深受 web 访问者和开发人员的喜爱。

看看 Algolia 能为你做什么, 开始免费搭建。

什么是矢量搜索?

原文:https://www.algolia.com/blog/ai/what-is-vector-search/

向量搜索是一种使用机器学习模型来查找具有相似特征的相关对象的方法,该机器学习模型检测索引中对象之间的语义关系。

矢量搜索和推荐的解决方案越来越普遍。如果你想在你的网站上添加一个自然语言文本搜索,创建图片搜索,或者建立一个强大的推荐系统,你将会希望使用向量。

这背后的研究已经进行了几十年,但到目前为止,只有谷歌、亚马逊和网飞等最大的公司才能建立和扩展矢量搜索。这些公司雇佣了数千名工程师和数据科学家,一些公司甚至开发了自己的计算机芯片,以提供更快的机器学习。

今天,几乎任何一家公司都可以用很少的时间和价格部署矢量搜索和推荐。Vector 技术为开发人员开启了一个全新的时代,让他们能够构建更好的搜索、推荐和预测解决方案。

本博客介绍了矢量搜索及其背后的一些技术,如矢量嵌入和神经网络。此外,我将简要介绍神经散列法,这是一种能够更快、更有效地传递向量的新技术。

语言问题

语言往往模棱两可,模糊不清。两个词可以表示同一个意思(同义词),或者同一个词可以有多个意思(多义词)。例如,在英语中,“神奇的”和“棒极了”有时是同义词,但“棒极了”也可以表示许多不同的意思——鼓舞人心的、令人畏惧的、神圣的,甚至是丰富的。

向量嵌入(也称为单词嵌入,或简称为向量)以及不同的机器学习技术,如拼写纠正、语言处理、类别匹配等,可用于构建和理解语言。

什么是矢量嵌入?

矢量化是将单词转换为向量(数字)的过程,这使得它们的含义能够以数学方式进行编码和处理。你可以把向量想象成代表某种东西的一组数字。在实践中,向量用于自动化同义词、聚类 documents‍、检测查询中的特定含义和意图以及对结果进行排序。嵌入是非常通用的,其他对象——像整个文档、图像、视频、音频等等——也可以嵌入。

我们可以用一个简单的三维图来可视化矢量:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Image via Medium showing vector space dimensions. Similarity is often measured using Euclidean distance or cosine similarity.

你和我都能理解诸如“国王”、“女王”、“统治者”、“君主”和“皇室”等术语的含义和关系有了向量,计算机就可以通过在 n 维空间中把这些术语聚集在一起来理解它们。在上面的三维例子中,每个术语可以用坐标(x,y,z)来定位,并且可以使用距离和角度来计算相似性。

在实际中,可以有几十亿个点,几千个维度。然后,可以应用机器学习模型来理解向量空间中距离较近的单词(如“国王”和“王后”)是相关的,距离更近的单词(如“王后”和“统治者”)可能是同义词。

向量也可以通过加减乘除来寻找意义和建立关系。最通俗的一个例子就是 国王——男人+女人=王后 。机器可能使用这种关系来确定性别或理解性别关系。搜索引擎可以利用这种能力来确定一个地区最大的山脉,找到“最佳”的度假路线,或者确定健怡可乐的替代品。这些只是三个例子,但还有成千上万个!

如何创建矢量嵌入

一些最早的将单词表示为向量的模型和尝试 可以追溯到 20 世纪 50 年代 根源于计算语言学。在 20 世纪 60 年代,关于语义差异的研究试图测量单词的语义或意义。【NLP】,一种分析文本以推断意义和结构的方法,开始于复杂的手写规则集,但在 20 世纪 80 年代转向了新的机器学习模型。NLP 今天仍然在搜索引擎中使用,以帮助构建查询。

在 20 世纪 80 年代后期,一种新的统计模型,潜在语义分析(LSA),也称为潜在语义索引(LSI),被开发用于创建向量和执行信息检索。LSA 非常擅长通过分析哪些术语经常一起使用来理解文档相关度,以建立语义相关度模型 (例如,“皇室”和“女王”)。

这是处理某些问题的好方法——例如同义词和多义词,以及测量对象之间的距离(或相似性)——但是,它很难扩展。LSA 的计算开销很大,尤其是当矢量数量增加或基础数据发生变化时,例如,每次更新目录时。

2013 年,word 2 vec作为利用神经网络理解词语相似度的新模型被推出。像 LSA 一样,Word2Vec 可以用来创建单词嵌入,然后经过训练找到语义相似的文本。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Image via IBM

顾名思义,神经网络是类似大脑中神经元的机器学习网络。神经网络的基础是一种称为深度学习的机器学习。神经网络中的每个“神经元”本质上只是一个数学函数。计算每个神经元输入的加权总和;输入的权重越重要,它对神经元输出的影响就越大。

你可以在语音助手、面部识别、自动驾驶汽车和许多其他应用中找到深度学习。深度学习可以在庞大的数据集上训练,能够识别大量复杂的模式。

矢量搜索结果的例子

如今,有各种各样的矢量嵌入模型来处理不同的数据,如图像、视频和音频。还有许多免费提供的矢量数据库,带有矢量嵌入和距离度量,表示矢量之间的接近度或相似度。

也有各种算法可用于搜索矢量数据库以找到相似性。其中包括:

  • ANN(近似最近邻):一种使用距离算法定位附近矢量的算法。
  • kNN:一种使用邻近度来预测分组的算法。
  • (SPTAG)空间划分树和图:大规模近似最近邻库。
  • Faiss:脸书的相似性搜索算法。
  • HNSW(分层可导航小世界):一种用于确定相似性的多层图方法。

在这些不同的技术之间存在权衡,你经常会看到多种技术被用来更快、更准确地交付结果。这些不同的技术将提供更好的结果,甚至对于难以处理的查询。我们将在未来的博客中讨论这些不同的技术和权衡。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

例如,当搜索电子产品目录时,人们有时会键入“usbc”、“usb-c”或“usb c”。这些是一个意思,还是三个不同的项目?关键字引擎可能很难处理这种格式,通常您可能需要创建 if/then 规则来指导搜索引擎如何管理这个查询。然而,对于矢量搜索,这不是问题。向量搜索引擎将知道提供类似的结果。

这里有一个更有趣的例子:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在我们拥有 20,000 多种产品的测试数据库中——其中仅包含产品名称和品牌名称——我们搜索了“咖啡礼品卡”(如上)。“咖啡”一词不在星巴克礼品卡的描述中,但是,向量引擎可以将“咖啡”和“星巴克”联系起来,以返回良好的结果!

矢量搜索挑战

向量嵌入帮助我们找到文档之间的相似性。就相关性而言,对于许多类型的查询,向量搜索优于关键字搜索。如果它们真的很棒,为什么我们不使用矢量搜索来搜索一切呢?事实上,对于许多查询类型,关键字搜索仍然提供了更好的相关性。此外,矢量搜索不是非常有效,并且在历史上,如果不在计算机处理方面进行大量投资,就无法扩展。随着新的,最近推出的神经哈希功能,矢量搜索终于能够规模。以下是更多相关信息。

准确率 vs 关键词搜索

矢量搜索非常适合模糊或宽泛的搜索,但关键字搜索仍然是精确查询的主宰。顾名思义,关键字搜索试图匹配精确的关键字。其他功能,如自动完成、即时搜索和过滤器也使关键字搜索流行起来。

例如,当你在关键词引擎上查询“阿迪达斯”时,默认情况下你只会看到阿迪达斯品牌。矢量引擎的默认行为是返回 相似的 结果——耐克、彪马、阿迪达斯等…都在同一个概念空间里。关键字搜索仍然为具有特定意图的短查询提供更好的结果。

速度和比例

向量搜索更有可能出现瓶颈,因为查询必须进行复杂的向量计算来预测关系,而不是仅仅读取基于列的索引。机器在不同的入站进程之间分配 CPU 时间。事实上,大部分嵌入也需要 GPU 推理,包括查询,所以这在某些方面甚至更复杂。

为了应对这种情况,搜索引擎要么需要更强的计算能力,要么必须更快地处理同样的查询。向量搜索公司多年来一直在推广向量人工智能的好处,但成本和性能问题阻碍了它的进展,并引发了对其可行性的担忧。

一些提供矢量搜索模块插件的公司试图通过只运行矢量搜索来回避问题,如果关键词搜索结果很差的话。这意味着你可以选择其中一个——关键词或向量,速度或质量——但不能两者同时进行。

有些人认为缓存是解决这个问题的好方法。有观点认为,通过缓存结果,您几乎可以消除成本并立即提供结果。在实践中,搜索查询变化很大,缓存的成本效益往往是可疑的。搜索的缓存率可能会非常低,尤其是对于拥有大量长尾内容的网站(使用我们自己看到的客户数据,o n 平均来说,50%的流量是长尾查询,这些长尾查询不够频繁,无法被缓存 )。

解决所有这些问题——准确性、速度、可伸缩性和成本——的一种方法叫做神经散列法。我们将简要解释它是如何工作的。

二元向量

矢量可以工作,但如上所述,其速度和规模有限,会影响性能和成本。我们采取了一种不同的方法,称为 神经哈希 ,这种方法不需要权衡就能利用向量。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

Vector search engines use neural networks and deep learning models to deliver semantic search capabilities.

神经哈希使得基于向量的搜索与关键字搜索一样快,并且这是在不需要 GPU 或专用硬件的情况下完成的。神经散列使用神经网络来散列向量——将向量压缩成二进制散列(或二进制向量)。你可能听说过哈希;加密哈希是一种常用的安全技术,用于为受保护的密码比较生成微小、唯一的输出。

在性能方面,这些散列向量可以在商用硬件上运行,保留 96%(或更多!)的矢量信息,并且可以比单独计算矢量快上百倍的 。

现在,如果有某种方法可以将关键字搜索和神经散列结合到同一个查询中…

混合搜索

混合搜索是一种将全文关键词搜索引擎和矢量搜索引擎结合到一个 API 中的新方法,可以两全其美。

对于同一个查询,同时运行关键词和矢量引擎是非常复杂的。一些公司选择通过顺序运行这些过程来绕过复杂性——他们运行关键字搜索,然后,如果没有达到某个相关性阈值,则运行向量搜索。这方面有很多不好的权衡,比如速度、准确性、过滤和堆排序。这些所谓的双系统受到影响,因为向量数据库通常没有相同的(或任何)过滤能力,所以它们会返回大量不必要的信息。

真正的混合搜索是不同的。通过将全文关键词搜索和向量搜索结合到单个查询中,客户可以快速获得更准确的结果。对于 Algolia,我们已经将神经散列与我们世界一流的快速关键字搜索技术结合到一个单独的 API 调用中。它可以扩展以满足任何规模的数据集的需求,即使是对于频繁更新和删除的大量更改的索引,也不会产生任何额外的开销。

希望这已经为你提供了一个很好的矢量搜索概述,以及它如何从根本上改善你的网站的搜索结果!

敬请关注。全新的 Algolia 搜索体验即将推出!S 登录通知可用:

AI 搜索公告列表

什么是语音搜索优化?

原文:https://www.algolia.com/blog/product/what-is-voice-search-optimization-tips-tricks-and-software-tools/

想象一下,你第一次去商场,突然很想吃披萨,而且必须是纯素食的。你是怎么处理的?随便问个人美食街在哪?去每个食品摊贩那里看看他们有没有展示素食披萨?

大概不会。你拿出手机,对吧?

当然。但有趣的是 你接下来可能会做什么。

越来越多的人不再在搜索栏中输入搜索词,而是使用智能手机(或其他设备)作为虚拟助手进行快速语音搜索(尤其是当你饿了的时候?).你会听到智能手机用户用自然语言说语音命令,比如(对苹果的 Siri)“我在哪里可以买到素食披萨?”或者“好的谷歌,我附近最好的素食披萨在哪里?”无论他们是在旅途中使用手机应用程序语音搜索功能,还是在客厅使用亚马逊 Echo 智能扬声器进行查询,这一趋势都将成为主流。

因此,对于渴望成功的企业来说,针对 SEO(搜索引擎优化)的语音搜索优化是必不可少的。SEO 专业人士、营销经理和内容创作者都必须重新思考如何优化他们的电子商务网站、营销活动和内容,以反映对语音搜索技术的日益重视。

为了帮助您改善企业的语音搜索结果,让我们来探索一下您需要如何、由谁、何时、何地以及为何开始整合词语,例如 如何何时**何处 以及因为使用那些疑问词是实现成功语音搜索优化的方法之一。

语音搜索趋势

更多的人开始习惯于在 其他人 他们的手机讲话。这种 趋势 波及范围远不止语音搜索一项,尤其在年轻一代中。单向类型的说话,如视频日志、语音笔记、抖音和 Instagram 卷轴,现在很流行。对着电话说话而不期望有人回应是很常见的。但最关键的是,不仅仅是 而是 年轻一代正在拥抱虚拟助手和语音搜索,这是每个人。

说明这一现象的几个统计数据:

来自 Gartner 的研究表明,新冠肺炎·疫情可能也在推高语音搜索量方面发挥了作用。首先,被困在室内的人可能已经把亚马逊 Alexa 作为他们唯一的(或首选?)公司。此外,在公共场合,如果人们可以直接对着耳机麦克风说话,从 Siri、Alexa 或 Cortana 获得答案,他们就不太愿意拿出手机来触摸屏幕。

如何优化语音搜索进行 SEO

因此,无论是使用手机还是通过数字助理,语音搜索正在改变人们寻找所需的方式。公司正在转向语音搜索优化,以满足日益增长的需求,并确保他们的客户能够成功完成搜索。

你需要做些什么来优化你的语音搜索应用?如何能让你的语音搜索在线完美?你如何锁定本地语音搜索搜索引擎优化目标?

在确定语音搜索优化的 SEO 策略时,有三个主要方面:关键词和语气、网站内容以及完善本地搜索的机会。

关键词和语气

如果你想一想人们如何使用语音搜索——特别是,他们可能如何构建他们的搜索查询——你会注意到与传统的在线搜索相比有一些不同。

让我们想象一位女士下午 3 点要去林肯纪念堂,她想知道天气会怎么样。使用键入的谷歌搜索,她可能将她的查询框定为“华盛顿州 DC 的天气”,并迅速得到下午的天气预报。

如果她用谷歌语音搜索同样的信息,她很可能会表达为“今天下午华盛顿特区的天气预报如何?”或者“今天华盛顿特区会下雨吗?”或者可能是“Siri,我需要一把伞吗?”

典型的语音搜索:

  • 几乎总是作为一个问题出现
  • 是会话式的
  • 比文本字符串长

同样值得注意的是,在语音搜索中,说话者可能会假设一些上下文理解。例如,如果他们想研究产品以及在哪里可以买到它们,他们可能会假设他们的位置是已知的,而不会在他们的语音查询中包含这些细节。

这些参数为语音搜索优化提供了一些提示。你应该用问题形式的长尾关键词。这意味着在字符串的开头使用那些疑问词——如何、谁、何时、何地以及为什么*——*。此外,在所有内容中使用对话语气,包括关键字,并包括填充词,如 the、of、to 和 for。

网站和内容

如何组织网站内容对人们的语音搜索成功至关重要。这里有几个因素需要考虑。

目标“丰富”答案

丰富答案(或“丰富结果”)是出现在搜索结果正上方的信息的 片段 。这些结果是从排名靠前的网站内容中提取出来的。他们以谷歌认为全面的方式回答问题。

因为语音搜索用户期望快速响应,所以出现的是丰富的答案——包括特色片段、知识图表、知识面板和知识框。对于语音搜索优化,您需要创建 web 内容,这些内容可能是优秀的丰富答案的候选材料。

这可能是一个挑战,但你通常可以通过使用包含长尾关键词的问题作为博客帖子或网页的标题来实现。接下来的文字应该简短、简洁、直接地回答你提出的问题。

包括常见问题(FAQ)

另一个有效的做法是添加一个 FAQ 页面,或者在页面底部添加一些适用的 FAQ。这很有效,因为 FAQ 结构是一个常见问题,后面跟着一个快速回答。

为移动用户优化你的网站

因为语音搜索大多发生在 移动 设备上,所以你的网页必须针对移动设备进行优化。

提高你的站点页面速度

因为需要以闪电般的速度回答语音搜索查询,所以需要快速的网站页面加载来吸引算法。

完善本地搜索的机会

大多数移动语音搜索查询都围绕着当地的地理位置和环境信息(比如在哪里可以找到素食披萨)。与本地区域相关的语音搜索并不适用于所有类型的企业,但对于酒店和零售本地企业,它应被视为您营销策略的一个关键部分。

语音搜索优化的最佳工具

我们对语音搜索优化策略的讨论到此结束;希望这些建议对你有用。

借助 Algolia 强大的搜索 API,您可以预测语音搜索者想要什么,准备好您的本地化内容,以便搜索引擎可以轻松地将这些内容提供给使用手机的人,总体而言,为您的用户提供愉悦的体验。

在 Algolia,我们帮助公司应用 语音搜索最佳实践 到 优化 网站和应用程序内部语音搜索的方方面面。例如,下面是我们如何帮助weight watchers实现语音搜索以改进其健康应用。

我们已经准备好帮助您构建个性化的移动搜索体验,以提升您的品牌。您可以使用原生浏览器 语音到文本支持 将语音搜索添加到您的移动搜索体验中。

查看我们关于 的网络研讨会,了解如何打造 卓越的语音搜索体验,并在 零售 中使用语音搜索,然后 联系我们 以便我们帮助您入门!

什么是语音搜索?

原文:https://www.algolia.com/blog/ux/what-is-voice-search/

让搜索变得前所未有的简单

语音搜索,也称为语音搜索,让人们通过说话而不是在搜索框中输入文本来请求信息。简化和精简搜索过程以改善用户体验的趋势推动了语音搜索技术的发展。这种受欢迎的用户界面可以取代键盘输入的查询,从而节省时间并减少工作量。

一种澎湃技术

语音将永远是人类最好的交流工具,仅仅这个原因就使语音搜索成为一个引人注目的选择。 这里有一些统计数据 说明了使用语音技术和语音设备进行搜索的重要性日益增长:

  • 到 2024 年,智能音箱市场(用计算机生成的声音响应口头命令的独立设备)将超过 300 亿美元
  • 没有语音助手的人中有 34%有兴趣购买一个
  • Gartner 的一项研究预测,到 2020 年,30%的浏览会话将包含语音搜索
  • Juniper Research 的分析师预测,到 2023 年,基于语音搜索的电子商务将增长到每年 800 多亿美元

随着与疫情相关的在线购物的激增以及大量新产品涌入在线市场,专家预测对以语音为中心的用户体验的需求将会更大。

语音搜索给用户和电子商务购物者带来的好处

通过语音搜索节省了时间,因为无需调出搜索引擎网页并在搜索框中输入问题。从当地餐馆的评论到最新的体育比分,语音搜索使信息访问变得自发、方便和容易。当搜索引擎使用先进的自然语言理解来生成想要的答案时,这项技术可以成为一个值得信赖的“顾问”。

语音搜索电子商务简化了寻找产品和探索购买选项的过程。语音驱动的购物明显比在网上搜索框中输入文本要快,它为个性化、无障碍搜索和追加销售提供了新的机会。

例如,假设您正在网上购物,就在完成订单之前,一位支持语音的购物助理告诉您,您的订单上有一个诱人的附加产品,需要多付一美元。很有可能你会注意到这一点,你很可能会把它加到你的购买中。

根据WhatIs.com,语音搜索的热门应用有:

  • 搜索引擎查询
  • 请求特定信息,如股票报价或体育比分
  • 启动程序和应用
  • 选择搜索选项
  • 在音频或视频文件中搜索内容
  • 免提声控拨号

语音搜索的准确性需要有效使用人工智能(AI)和机器学习。人工智能使语音功能足够智能,可以捕捉购物行为和习惯。

基于人工智能的自然语言理解(NLU),让用户可以轻松地找到他们正在寻找的东西,即使他们不确定他们到底需要什么。用户可以简单地用简单的语言问一个问题,而不是输入导致“没有找到结果”的关键字,例如,“来自 1990 年代的高度评价的浪漫喜剧电影”

通过利用人工智能和 NLU 的能力来检测重要的细节,加上说话者的意图,Algolia 将口头请求的重要部分分解开来,并准确推断出用户想要什么。从电子商务的角度来看,这可以让客户更快地找到他们想要的产品,从而带来更多的转化率和更多的销售收入。

此外,通过分析之前的购买行为,语音助手可以提醒在线购物者他们已经购买的产品以及可能再次购买的产品。这种自发的引导不仅为购物者增加了便利, 它还可以作为营销人员和品牌的业务助推器

语音搜索是新的移动

十多年前,移动设备和智能手机革命席卷全球,令许多开发者和营销人员措手不及。现在,语音搜索正在创造同样的剧变,由几个流行的 iOS 和 Android 应用程序和设备实现。以下是一些几乎已经家喻户晓的产品和服务:

谷歌助手

“嘿,谷歌”是推出这款基于数字语音的应用程序所需要的一切。Google Assistant 使用 Google 搜索索引来查找查询的答案,并根据收到的信息给出口头回应。本质上,谷歌助手为用户进行谷歌搜索。Google Assistant 的功能也可以通过 Google Actions 或品牌可以创建的第三方应用程序进行扩展,用户可以调用这些应用程序与品牌进行交互,或者为他们的助手添加新功能。

谷歌智能助理设备

谷歌的独立智能助理设备使用谷歌助理。谷歌主页是一个小型扬声器设备,而谷歌主页中枢增加了一个屏幕。对于那些通过看而不是听学习得更好的人来说,屏幕尤其有用。谷歌家庭中枢可以显示图形和视频来清楚地说明某件事是如何完成的。

Amazon Alexa

与谷歌助手(Google Assistant)的功能相似,Alexa 可以找到特定查询的答案,也可以回答关于天气和运动等事情的一般性问题。开发者和品牌可以构建技能,或者在 Alexa 平台上运行独立的语音应用。

苹果西里

自 2011 年以来,基于语音的数字助理 Siri 已经嵌入每一部 iPhone 中。为了让这个迷人的声音听你的指挥,你只需要说“嘿,Siri。”

微软 Cortana

Cortana 是微软开发的虚拟助手,它也使用 Bing 来执行任务和回答用户提出的问题。Cortana 提供英语和其他七种语言的帮助。

利用语音搜索提高客户参与度

许多公司正在使用语音搜索和语音应答技术在网上定义和推广他们的品牌。这里有四个突出的例子:

约翰尼·沃克

约翰尼·沃克利用语音搜索向其网站上的购物者宣传其苏格兰威士忌的特色和质量,帮助建立品牌亲和力和客户忠诚度。游客被问及他们对威士忌的偏好。他们的反应导致推荐约翰尼·沃克产品或最适合他们的产品。

雀巢

2017 年,这个全球品牌为亚马逊 Alexa 推出了 GoodNes skill:为喜欢烹饪的顾客提供视觉和语音浏览体验。除了 Alexa,GoodNes 还提供了一个可视指南,可以在桌面电脑或移动设备上的 Safari 或 Chrome 上运行。

多米诺比萨

达美乐的语音助手“Dom”通过电话自动订购披萨,确保订购过程方便快捷。Dom 接受人们的订单并检查他们的订单状态。Dom 是该公司将声控数字技术融入其订购和客户服务渠道的战略的核心。

帕特龙龙舌兰

这个优质龙舌兰酒品牌与几个虚拟助手合作,包括亚马逊 Alexa 和谷歌助手。Patrón 网站上的 声控“调酒师” 与公司的目标受众分享 Patrón 鸡尾酒实验室配方、操作视频、技巧和建议。

阿果对语音搜索的承诺

Algolia 正在努力推广 语音搜索 作为一种丰富用户体验和改进客户网站功能的方式。通过使用查询理解、 人工智能 、个性化和搜索相关性——这些技术可以在 web、移动设备和语音优先应用程序中轻松实现——您可以将您的搜索能力提升到新的高度。

关于语音搜索的 Algolia 方法的更多信息,请参见:

你需要知道的 2020 年语音搜索统计

语音商务:搜索的未来&电子商务

语音搜索课程:打造卓越语音体验的最佳实践

什么是自然语言理解?

了解更多关于 Algolia 语音搜索的信息

知识管理系统由什么组成?

原文:https://www.algolia.com/blog/ux/what-makes-up-a-knowledge-management-system-how-do-you-choose-the-best-option/

仅在 2021 年,据估计就产生了大约 79z 字节的数据。在这种情况下,人类历史上所有记录的口语单词可以只用大约 42 zettabytes 来存储。这种铺天盖地的数据洪流对地球来说是一个问题,更不用说个体企业了,它们需要能够有效地共享信息,并利用自己的公司知识来帮助推动员工和客户的成功。

进入 知识管理 (KM)及其有用的知识管理系统(KMSes)。知识管理系统为企业提供了团队成员跨部门共享重要组织知识的方式,促进了工作空间协作,同时减少了孤岛和瓶颈,从而提高了整体指标。

什么是知识管理系统?

一个成功的知识管理系统是一个软件平台,允许企业共享正确的知识——包括三种特定类型: 隐性知识、显性知识和隐性知识——与需要轻松访问名副其实的内容库的员工共享。知识管理工具控制信息资产的创建、获取、组织、访问和使用,以便在整个企业中共享知识。这意味着 KMS 可以帮助员工高效地输入和存储数据,发现真知灼见,然后在需要的时候随时随地自动传递发现的智慧。

不同的公司有不同的业务流程,这要求他们在知识管理系统中关注不同的功能。幸运的是,市场上的知识管理工具的类型也有很大的变化。

知识管理系统实例

一些 KMSes 充当高级笔记平台或 内部网】-可访问的文档管理系统,而另一些则具有集成的客户服务工具和客户支持票务自动化功能。KMS 可能需要整合知识库文档、项目管理电子表格、学习管理系统、可重复使用的模板、以不同格式存储的数据、不同级别用户的权限、CRM(客户关系管理)工具、Slack 等通信软件或这些元素的任意组合。不考虑特定的 KMS 特性,知识管理系统的用户体验质量也可能有很大的差异。

知识管理有什么好处?

好的知识管理不仅仅是通过友好的界面部署质量工具来提高员工生产力或客户满意度;它必须与一种文化转变相一致,这种文化转变是朝着专注于单一真理来源的协作工作和知识共享的方向转变;信息可以帮助每个人做好自己的工作,同时帮助公司实现收入和其他目标。

你知道吗,未能分享知识会导致员工不满和巨大的经济损失?IDC 报告称,发行成本财富 500 强企业每年 310 亿美元。不幸的是,没有专门的知识管理工具的影响,这是一个可悲的现实。

好消息是,一旦你把公司范围内的知识管理系统恰当地固定下来,好处会成倍增加。从更好的员工保留率,到更好地回答客户问题,再到更高的整体销售额,通过在公司的每个部门之间分享知识,您可以在每个资产负债表上产生积极的连锁反应。

以下是实施有效 KMS 的一些最常被提及的好处:

高等职员留用

让员工更好地获取重要信息是提高员工忠诚度的好方法,这样可以留住你最优秀的人才,而不是眼睁睁地看着他们跳槽。使用知识管理系统可以确保中央内容管理中心的可用性,员工可以访问该中心来帮助他们完成日常任务和项目。这种改进的信息访问可以防止沮丧,提高员工满意度。一个消息灵通的员工很可能是一个快乐的员工。

更快入职

盖洛普的一项民意调查发现,仅有 12%的员工非常认同他们的组织在新员工入职方面做得很好。

第一印象对新员工来说很重要。正如你不会期望一个新员工忘记他们迄今为止在职业生涯中学到的一切,一个组织也不应该期望员工从一张白纸开始工作。拥有一个集中的知识管理系统可以通过整理所有新员工的材料来加快入职速度,以便新员工可以轻松访问这些材料。根据您使用的知识管理系统的类型,您还可以管理此信息的交付方式(例如,作为需要认证的课程、教程或常见问题)。

销量更高

事实上,在从小型企业到大型企业的各种规模的组织中,当销售团队消息灵通时,客户体验就会改善。

出色的知识管理系统有助于销售代表更快地找到信息并简化他们的流程。销售代表可以帮助客户获得他们问题的即时答案,这样他们就更有可能更快地做出购买决定,而不是去别处寻找信息或等待回电。

一个出色的客户成功团队

与销售团队非常相似,有了好的知识管理解决方案,您的客户成功团队会发现管理客户数据更容易,以便让客户了解最新的功能、培训和帮助台创建的自助服务支持。一个好的知识管理工具可以将各个部门聚集在一起:如果产品团队在团队 wiki 上发布了一个重要的新更新,他们也可以将有关它的细节添加到 KMS 中,在那里可以很容易地检索到这些重要的细节。

营销人员可以将这些知识用于对外宣传,销售、客户成功和支持团队可以在未来与客户和销售线索的通信中使用这些知识。消息更灵通的客户成功团队总是有利的。

选择最佳知识管理软件

考虑 KMS 时,首先要记住的是,有效的知识管理不是一成不变的。这是一个持续的承诺,它的成功依赖于在你的组织中建立一个文化转变。如果你的利益相关者和员工能够致力于培养一种重视知识的文化,你可以期待你的 KMS 取得巨大的成果。

第一步:现场决策。思考 KMS 的哪些优先事项对您公司的独特用例最重要。

在寻找贵公司的完美 KMS 时,请记住以下三个关键特征。

整合

对相关信息的访问应该是无缝的、用户友好的,并且与员工的日常工作流程兼容。您可以通过将知识管理与您的员工正在使用的应用程序和程序相集成来实现这一点。检查任何潜在的新知识管理工具,看看它们是否与您现有的应用程序和协作工具兼容,这一点很重要。

知识流

所有员工在他们的工作日都创造和消耗不同类型的知识,但是某些角色的人,由于他们的工作描述,自然比其他人产生更多的知识用于你的内部知识库。这也意味着其他员工经常需要访问他们创建的信息。如果你能发现知识流——确定谁在知识管理过程中产生重要信息,谁在消费这些信息——那么你就能创建正确的知识管理系统来利用它。

可搜索性

所有好的知识管理系统在有智能、直观的搜索能力支持时都是最有效的,这种搜索能力能让用户在大量不断增长的数字信息中高效地找到他们需要的东西。您的搜索功能可以通过集成搜索工具或 预制高级搜索 API 提供。使用高级 API 的好处是,它可以从各种来源提取数据,并无缝地集中您组织的所有信息。无论哪种方式,随着您的日常数据的冲击,优秀的搜索是一个救命稻草。

获取正确的知识库软件

在建立一个有效的知识管理系统的背景下,搜索 API 是一个可以给你带来显著竞争优势的简单工具。它提供了一个完整的知识管理平台的优化、功能和覆盖范围,以及一个复杂的搜索引擎的易用性和便利性,该搜索引擎为您公司的数据搜索者提供近乎实时的结果。

有了 Algolia,您可以将孤立的数据集中起来,并通过一个方便的界面进行访问。我们的 SaaS 解决方案 还可以根据用户的活动和过去的搜索来修改他们的搜索结果,使他们更容易找到他们经常需要的信息。我们也提供随用随付的价格。 要获得一些关于搜索如何与知识管理系统一起工作的真实例子,ping 我们的团队;让我们来谈谈你的知识管理策略,以及你如何优化以取得成功!

期待 Algolia 在 NRF 2023 零售大展上的表现—

原文:https://www.algolia.com/blog/algolia/what-to-expect-from-algolia-at-nrf-2023-retails-big-show/

Algolia 是新在线零售机制的关键人物,这一机制正在改变消费者和企业购物、购买和采购商品和服务的方式——作为 NRF 2023 零售大展的金牌赞助商,Algolia 是今年最受关注的主要参展商之一。

Algolia 团队喜欢面对面交流。我们喜欢在内部团队之间、内部部门之间以及公司总部之间建立联系。但最重要的是,我们重视与用户、客户、合作伙伴和人们的面对面交流。

随着我们走出大流行后的延期和推迟期,现在开始考虑明年的行业活动和贸易会议既令人欣慰又令人兴奋。全国零售联合会(NRF)在纽约的集会因其规模而得名,当然被称为零售业的大展,Algolia 将会全力以赴。

Algolia 将于 2023 年 1 月 15 日至 17 日在纽约市 Jacob K. Javits 会展中心举办,届时我们将在展会上展示完整的展台,并在 14 日的开幕派对上提前与大家见面。

宝贵的参与机会

“参加 NRF 2023 零售展对我们所有人来说都是一次特殊的经历。来自近 100 个国家的近 40,000 名零售专家将亲临现场,成为全球领先的年度零售活动的一部分,这是一个交流、会面和合作创新的绝佳机会。Algolia 的首席执行官 Bernadette Nixon 说:“整个 Algolia 活动团队都很高兴能够在这个宝贵的参与机会中与志同道合的专业人士会面。

Algolia 是新的在线零售机制的关键人物,这一机制正在改变消费者和企业购物、购买和采购日常所需商品和服务的方式。该公司是 NRF 2023 零售大展的黄金赞助商,我们热衷于展示零售和更广泛应用用例的最新 产品搜索、导航、浏览、推荐、企业搜索和发现 。

我们革命性的混合方法将关键字和基于向量的语义搜索结合在一个 API 中,该 API 可以无缝地适应任何组织的可组合架构。Algolia 的 API 优先搜索和发现平台使零售商能够在网络范围内创建引人入胜的最终用户体验,就像互联网本身一样广泛。

参加 NRF 2023 零售展将是 Algolia 自【2022 年 9 月收购search . Io以来首次有机会在大型 IT 贸易展上展示其新扩展的能力。

零售商的数字行动号召

消费者导航和搜索的方法和方式正在发生变化,变得越来越复杂。从战略上来说,零售商下一步需要做的是发现摆在桌面上的销售机会,其中许多机会甚至从未出现在购物车上。从未实现的“长尾搜索查询”中获取收入是零售业的当务之急(也是挑战)。

总的来说,零售商有巨大的零售机会来捕捉更具体、更狭窄和更依赖客户的长尾搜索。

首席执行官 Nixon 表示:“我们敦促 NRF 2023 零售大展的与会者参观我们的展台,了解 Algolia 如何让零售商利用我们的混合搜索引擎捕捉和完成长尾搜索。“据估计,多达 55%的搜索查询代表对产品和搜索的长尾请求,这是一种构建用户查询的更复杂的方式,需要结合关键字和基于向量的语义搜索来实现。”

作为长尾搜索的一个典型例子,一个人可能会搜索“季风天气的防水套件”,或“新祖母的神话般的领带”,甚至可能是“结实的吉他盒”——这些查询背后都承载着更多负载的意图和语境化的意义,而不是一个不太复杂的搜索引擎可以立即看到的。

查询分类

该公司还将展示其查询分类功能,该功能已于 2022 年 9 月 27 日公开测试。高级计划下的 Algolia 客户可以直接从他们的 Algolia 仪表板访问查询分类,并亲自体验这一新的有效功能。

我们认为查询分类是 Algolia 搜索和发现平台的关键组成部分,这一新功能将使您的客户更容易搜索、发现和找到他们想要的东西,从而大大减少最终用户的工作量。

利用 Algolia 查询分类,开发商、销售商、媒体公司和内容提供商可以预测客户的意图。Algolia 客户可以将他们的买家与最相关的商品类别或精选商品联系起来,帮助他们设计最能满足最终用户旅程中每时每刻需求的内容或产品类别。产品经理和跟单员都可以利用 Algolia 打开目标相关性和提高网站转化率的大门。

请参加我们 2023 年 1 月在纽约举办的 NRF 零售大展!您可以提前与我们 预约会议,了解更多关于我们出席会议的

在此查看Algolia stand # 4046 信息 并在社交媒体@NRFBigShow 上关注该事件,并使用以下标签# retail# NRF 2023

在搜索 API 中寻找什么

原文:https://www.algolia.com/blog/product/what-to-look-for-in-a-search-api/

几乎每个网站都可以从出色的搜索体验中受益,从而提高用户对内容和产品的可发现性。然而,大多数企业没有专业知识或开发资源来从零开始建立一个现场搜索引擎。搜索 API 使任何规模的公司都能在不过度使用资源的情况下打造强大的搜索体验。

在这篇文章中,我们将介绍在选择搜索 API 时需要考虑的一些主要品质。

什么是搜索 API?

搜索 API 是软件组件,允许开发人员将搜索功能无缝引入网站和应用程序。它们提供了用于索引文档、查询各种类型的数据、管理 集群配置 、查看搜索分析等的后端工具。

虽然不是所有的搜索 API 都提供这些,但是质量库、软件开发工具包(SDK)和文档可以指导开发者完成搜索实现,极大地改善开发者体验。

搜索 API 可用于多种用例。例如,想象一下,你正在 开发一个电子商务网站 ,它有一个包含不同品牌、尺寸、颜色、价格等产品的大型目录。您将需要一个专门的工具来构建、存储和管理您的数据,并帮助用户快速准确地找到他们需要的东西。这就是搜索 API 的用武之地。开发人员可以将整个目录输入到搜索 API 中,并通过几行代码从网站上调用它。

然而,好处还不止于此。利用现成网站或电子商务商店的公司通常可以在这些 API 中插入很少甚至不需要编码的插件。例如,Algolia 有带ShopifyMagento的插件,只需点击几下就可以设置,因此即使是非技术用户也可以设置一个强大的搜索应用程序。

为什么搜索 API 很重要?

搜索 API 是最大限度缩短上市时间、同时最大限度提高投资回报的最佳方式。这意味着你可以用最少的努力为你的用户提供最好的搜索体验。使用搜索 API 的一些额外好处包括:

  • 降低开发的复杂度 。通过在现有功能的基础上进行构建,开发人员可以专注于适用于其用例的业务逻辑,而不是担心构建和管理搜索引擎的基础设施。
  • 简化自动化 。由于搜索引擎的基础设施是通过一个简单的 API 抽象出来的,开发人员可以轻松地将搜索工具插入现有的数据管道和集成中,以快速获得系统之间的数据流动。
  • 管理成本 。简单来说, 开发一个可扩展的搜索引擎是昂贵的 。这是一项非常技术性的工作,要求开发人员了解复杂的领域,如分布式系统和性能优化。将这些角色外包出去,并在构建真正的核心产品所需的开发人员类型上给予自己灵活性,这是非常有价值的。

有了清晰分离的搜索 API,您可以灵活地在任何地方运行软件——通过库在您的产品内部、在单独的微服务中或在单独的云中。 搜索即服务 像 Algolia 这样的公司提供托管解决方案,以便您可以让其专家团队运行和管理服务,并让您真正专注于您的业务,而不是维护基础架构。

在搜索 API 中要寻找的 7 个元素

开发人员、业务经理和最终用户都会从搜索 API 提供的强大功能和无缝实现中获益

以下是选择搜索 API 时需要考虑的 7 个关键因素,以最大化利益相关者的利益和体验。

  1. 性能、正常运行时间和可靠性
  2. 速度
  3. 易用性
  4. 安全与保护
  5. 分析学
  6. 文档
  7. 白盒方法

1。性能、正常运行时间和可靠性

对于大多数企业来说,服务停机会导致客户体验和收入的重大损失。您的服务需要在客户需要时可用。然而,扩展复杂的分布式系统(如搜索引擎)是一项艰巨的任务,经常会导致技术错误,从而导致请求失败。

因此,理解搜索 API 及其支持系统所能提供的可靠性水平是很重要的。需要注意的一些重要因素是 请求延迟统计——如平均值、中值和第 99 个百分点——以及服务正常运行时间。

例如,优质服务可以为 SLA 提供至少“99.999%”的正常运行时间(称为“五个九”)。这意味着系统丢失的请求不会超过 100,000 个中的一个。这将确保您的客户不太可能在与服务交互时遇到问题,如果遇到问题,应该会很快恢复。

2。速度

速度是奖励搜索体验的重要组成部分。搜索速度越快,响应性越强,你就越能吸引用户的注意力。 搜索 API 要尽可能减少搜索体验中的 延迟。

人类可以感知低至 20 毫秒的延迟,如果一个请求超过一秒,许多用户都会感到沮丧。理想情况下,用户应该在大约 100 毫秒或更短的时间内收到结果,包括服务器处理时间和网络传输时间。有许多因素会对此产生影响—数据传输大小、服务器优化、数据库索引等等。您应该评估您正在考虑的搜索 API 的请求延迟统计数据。这些可以帮助您了解服务的可靠性,衡量系统的响应能力,并预测对最终用户体验的影响。

3。易用性

由于亚马逊和谷歌这样的网站,用户对搜索的可用性有很高的期望。这些系统经过高度调整,能够以最小的努力为用户提供快速、简单的结果。正因为如此,所有企业都需要能够提供同等水平的服务,而不是强迫用户采取任何额外的步骤,这些步骤可能会让他们感到沮丧,并有可能让他们输给竞争对手。

网站需要提供符合用户习惯模式的用户体验。搜索 API 可以帮助您无缝地实现 UI 元素和功能,如自动完成、等,以提升搜索体验。进一步,用户数据可以用来 个性化 这些结果来进一步增加用户快速找到相关内容的机会。所有这些都会影响用户对服务水平的感受,并最终影响他们是否转换。

4。安全和保护

任何时候,当你把你公司的数据发送给第三方时,你都应该注意供应商是否有适当的安全措施来确保没有泄露或误用。这对于减少你的个人责任和保证你的客户和企业的安全是很重要的。

对于托管搜索服务,你可以查看他们的服务条款和隐私政策,以了解他们对你的数据做了什么,保留期限是多久,他们可以与谁分享这些数据,等等。如果你共享敏感信息,如客户数据或个人身份信息(PII),这些尤其重要。

从技术角度来看,您还可以查看他们的认证(如 SoC 2 或{\ lang 1033 ,}了解他们是否遵循了数据安全、加密和其他基础设施级保护的最佳实践。

5。分析

优化搜索是一个持续的迭代过程。确保的高度相关性是吸引和满足最终用户的关键。搜索 API 应该带有 搜索分析 功能,这对于理解和监控用户随时间的行为以及提炼相关性非常有用。

通过分析,你可以发现用户可能会使用你意想不到的语言和表达方式。或者,您可能会发现对某些类型的产品或内容有需求,而您目前没有提供这些产品或内容,您可以对其进行调整以满足客户的需求。除了分析特定的关键字和查询之外,还可以监控总的指标,如点击率或出现的 【无结果】页面 。这允许您调整您的搜索参数和配置,以最好地满足用例,并确保它们随着时间的推移工作良好。

6。文件

搜索 API 显著降低了构建搜索应用的复杂性,但开发人员仍然需要适当的文档来指导他们使用。例如,单个端点可能有几十个必需和可选的参数,可用于修改结果。API 提供者必须列出这些字段是什么,它们的前提条件和要求是什么,以及预期的结果是什么。文档使开发人员能够自行排除故障并进行指导,而无需连接到产品支持。

除了 API 文档 之外,有教程和实现指南可能会有用。这些有助于开发人员和非技术用户快速开始使用 API,并指导他们如何处理各种常见用例,以确保一致性和质量。对于大多数网站来说,实现遵循共同的工作流程,因此一组强大的示例可以确保开发人员以最好的方式实现。

7。白盒方法

许多 API 提供了不可见的简单性。开发者可以使用 API,但是看不到指导搜索排名的逻辑和设计。这实际上使搜索 API 成为一个黑箱,开发者失去了控制。也就是说,如果结果不理想,开发人员就不知道应该如何使用系统或对系统进行不同的配置来解决问题。

白盒方法向用户揭示了 API 的逻辑,而没有增加开发的额外复杂性。对于搜索 API 来说,这意味着开发人员和业务分析师可以很容易地查看和修改排名和相关性规则,从而可以很容易地根据业务规范对它们进行修改。这提供了一个环境,您可以在其中 A/B 测试 各种搜索配置的更改,并使用分析来确定是否成功。

无缝集成搜索和 Algolia 的搜索 API

搜索 API 是为数不多的面向开发者、决策者和最终用户的软件服务之一。开发人员从无缝的开发人员体验中受益,允许他们以最适合其现有平台的方式利用搜索 API。决策者可以信赖他们数据的安全性和隐私性以及服务的总体可靠性。最终用户受益于快速、自然和透明的搜索体验。

然而,搜索是一个复杂的过程,需要不断发展和完善。具有强大的开发人员库和 SDK 的可靠 API 有助于大大简化这个过程。借助 Algolia 托管的 搜索 API ,增强您的开发人员的能力并缩短上市时间。它拥有用于构建 10 种编程语言的生产就绪用户界面的库、完整的文档和实时支持。

在我们的电子书中学习更高级的搜索功能,以改善用户体验并提高转化率。从 Algolia 搜索中获得更多益处的 7 种方法 。”

卷积神经网络解释

原文:https://www.algolia.com/blog/ai/whats-a-convolutional-neural-network-and-how-is-it-used-for-image-recognition-in-search/

社交媒体用户 被展示了基于人脸识别技术他可能认识的人的快照,并被询问是否想在应用程序中将他们添加为好友。

一辆行驶在城市街道上的自动驾驶汽车 使用视觉识别技术进行物体检测,“看到”一名行人即将走下路边并在它面前乱穿马路,并决定通过减速做出反应。

一名医生 能够使用技术比较数千张 x 光韧带的可比医疗图像,从而自信地诊断她的病人的状况,并排除恶性癌细胞的存在。

一个警察部门 生成一张嫌疑犯的清晰照片,警察可以把它放在手边。但这还不是全部:通过生成对抗网络(GANs),图像可以用来训练面部识别的深度学习模型。

一家在线零售商 建议人们用其他人选择搭配的上衣、夹克和配饰来“完善”他们正在考虑的牛仔裤,社交媒体图像数据证明了这一点。

多功能视觉图像识别

这些是图像识别系统的一些最新应用,更广泛地称为计算机视觉:机器表面上像人一样“看”,以同样的视觉方式感知人类环境。

所有这些图像识别和分类应用程序有什么共同点?它们由称为卷积神经网络(CNN,简称 ConvNet)的机器学习子集专业处理。

卷积神经网络的定义

类神经网络 中脱颖而出,卷积神经网络是一种深度学习的网络架构,它从接收到的数据中进行学习。在各种类型的神经网络中,CNN 最擅长识别图像(和视频;另外,它们擅长语音和音频信号)。事实上,对于 CNN,数据输入被认为是与图像相关的。

在其图像处理周期中,卷积网络可以评估图像,为图像的各个方面分配重要性级别,并区分其视觉元素。

CNN 操作结构的创建受到了大脑中神经元连接方式的启发,特别是动物视觉皮层的组织方式。神经元只在特定的区域——感受野——对刺激做出反应。各种感受野重叠覆盖视觉区。

导盲犬?

一个没有眼睛的机器是如何熟练掌握模式识别,在卷积运算中解释图像的?你猜对了:借助人工智能。

卷积神经网络架构包括一个模型,一系列统计函数,计算和重新计算数字的像素化向量,直到图像被识别和分类。由于利用了数字(权重)、统计和通过节点(神经元或输入)对数据的处理,它可以“看见”,这些节点具有与之相关联的权重和阈值。

这种图像识别技术的第一步:将图像的像素值转换成称为矢量的数值,从而可以解释图像和提取图案。完成后,就可以输入数据了。

深度学习的 CNN 有几种类型的节点层,每一层都学习检测图像的不同特征。在每一层中,应用过滤器(一个 内核 或特征检测器),移动穿过图像的感受野,检查某些特征是否存在并激活某些特征。

一层中的所有节点连接到下一层中的每个激活单元或节点。如果一个节点的输出高于指定的阈值,则该节点被激活,其数据被传递到连接节点。

节点知道

在初始处理层中,重点是解读图像中的直观特征,如颜色和元素边缘。随着每一次连续的层迭代,过滤器活动深入到更复杂的地方,识别代表输入的元素。

在每一层中创建的部分识别的图像作为下一层的输入被推进。对于每一层,CNN 识别出图像的更大部分。

每次扫描后,计算一个 点积 。这一系列点的输出被称为特征图。

通过多次扫描,整个图像被处理,算法识别图像中的内容。

这种细化过程可以重复几十层、几百层甚至几千层,使图像逐渐变得更好、更详细。

这一壮举本身就令人印象深刻。但是还有更多。

由于 CNN 可能会处理数百万张图像,该模型会记录、校准并重新调整其权重。最终,它对自己看到的东西变得非常自信,几乎可以识别任何图像。在整个 CNN 世界,深度学习处理技能的完善意味着 计算机视觉领域一直在突飞猛进。

多层

CNN 识别图像的关键是从一层到下一层增加复杂程度。不同的 CNN 专家引用了不同数量的 CNN 层(其中一些是隐藏层)。不管这些不一致,结果是一样的:图像的准确解释。

除了基线输入层和输出层,构造块层还包括:

卷积层

这第一层是进行大部分计算的地方。可以包括在初始层之后用于附加分类的第二卷积层,以便于从图像中提取高级特征。

共用层

这一层降低了视觉表示的复杂性/维度——输入中的参数数量——因此丢失了一些信息。这个 下采样 层提高了效率,限制了 过拟合 的风险。

有两种类型的池操作:

  • Max pooling: 当过滤器扫描输入图像时,它选择具有最大值的像素传递给输出数组。

  • 平均池: 当过滤器扫描时,它计算接收域内的平均值,并传递给输出数组。此方法的使用频率低于最大池。

【全连通层】

这是根据提取的特征对图像进行分类的层。这最后一层是“完全连接的”(FC),因为它的节点与另一层中的节点或激活单元连接。

CNN 是上级

谈到视觉感知,为什么 CNN 比常规神经网络(NNs)更好?

常规神经网络(NNs)无法伸缩。它们没有 CNN 那样的计算能力和资源。神经网络可能试图学习训练数据中过多的细节(称为过度拟合)。如果你将数百万张照片输入计算机,并要求它考虑图像识别工作中的每一个重要细节,包括视觉“噪音”,这可能会扭曲图像分类。

CNN 架构对图像更好,因为它利用了一种称为参数共享的方法,与 NN 相比,这降低了计算强度。在它的每一层中,每个节点都连接到另一个节点。随着过滤器在给定层中穿过图像,相关联的权重保持固定。

CNN 如何在搜索中提高图像识别能力

得益于 CNN 对视觉信息的精准处理,对图像的分类,以及计算机视觉的提升, 视觉搜索 的领域得到了爆发。这种视觉处理现象在电子商务中尤为明显,网站现在可以为用户提供 视觉购物 的优势和乐趣。

在 Algolia,我们帮助公司让现实生活中的人们更容易使用图片搜索来准确找到他们想要的商品,并通过“完成外观”等功能鼓励追加销售。

想用我们 CNN 辅助的 图片搜索 技术提升你的网站搜索结果? 联系我们 我们会帮你发现并追求所有的可能性。

Algolia 的新功能推荐:春季发布回顾网络研讨会

原文:https://www.algolia.com/blog/product/whats-new-with-algolia-recommend-spring-release-showcase-recap-webinar/

赶上我们的春季发布展示会

每天顾客都会收到大量的推荐。你如何引导他们,让你的在线体验脱颖而出?

Algolia 的客户生命周期营销负责人雷切尔·沃德和中小企业、业务战略和优化总监 Ben Pusey 主持了我们最新的春季发布展示网上研讨会,他们在会上公布了 Algolia 推荐的新产品更新。

我们从下面的谈话中收集了一些要点,他们探讨了企业如何通过提供可靠和相关的建议来增加收入、建立忠诚度以及为客户创造最佳的数字体验。也可以 点播观看完整的网上研讨会

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

为什么我们在乎推荐**—**搜索本身已经不够用了。推荐已经成为当今在线发现体验不可或缺的一部分。无论您的客户是购买新产品、消费您发布的内容、查找特定信息,还是寻求解决客户问题,您都需要能够更好地吸引客户、增加收入并为您带来竞争优势的正确建议。更多阅读我们最近的文章 为什么推荐推荐做推荐

Algolia 在 2021 年推出了“推荐”,以帮助我们的客户面对这一挑战,正如任何新产品一样,总有进一步发展的空间。我们在这里分享的 2022 年春季更新是基于客户的直接反馈而构建的。请继续阅读,了解我们的新核心功能和 Algolia 推荐的其他令人兴奋的更新。

**我们的客户面临的挑战—**人们一直期望企业在正确的时间提供正确的内容和正确的环境。曾经被认为是尖端的特征很快就变成了桌面赌注。像亚马逊和网飞这样的公司在推荐方面设立了很高的标准——这种水平的指导是人们所期望的,即使他们正在查看较小企业的网站。

我们致力于为客户提供最佳建议,以便他们能够提供最强、最相关的结果。自从推荐推出以来,我们已经在客户中取得了许多成功。随着我们最近的更新,我们期待更多。

我们为解决这些挑战而开发的产品**–**C超负荷工作会导致不满、浪费时间,有时甚至会导致瘫痪。产品和内容推荐占了发现过程的很大一部分。

Algolia 搜索 已经帮助我们的客户通过独特和差异化的搜索体验增加了 70%的收入。现在有了推荐,我们的客户能够通过产品和内容推荐来推动剩下的 30%。Algolia Recommend 帮助您的开发团队建立差异化,在任何渠道上提供推荐,增加在线收入,推动客户参与,并最终改善您的整体客户体验。

**谁能用推荐?****–**我们的 电商 客户喜欢 Algolia 的推荐,但我们也对其进行了调整,使其更适用于非电商业务。无论您的内容在哪里,我们现在都可以帮助您基于它做出有用的推荐。我们的相关内容模型使用混合引擎,以及协作过滤和用户信号来提供高质量的推荐。

由于这些更新,我们预计内容相关业务的参与度、在线时间和品牌忠诚度将会增加,客户流失也会减少。我们还发现,相关产品模型对平均订单价值(AOV)、转换率、每单商品数量有积极影响,之后我们在推荐中构建了相关内容模型。

**有什么新功能推荐?****–**作为我们 2022 年春季更新的一部分, 我们有四个关于 Algolia 推荐的新内容要分享,包括两个新的核心功能。其中之一是我们的混合推荐引擎,我们构建该引擎是为了处理稀疏数据和冷启动问题。我们的趋势模型允许您基于真实的客户交互(即真实数据)生成动态内容块。相关内容模型更适合非电子商务应用程序。你可以在我们关于 Algolia 推荐更新的博客文章中了解更多关于这些更新的信息。

我们还拥有自己的规则引擎,它位于我们的推荐产品之上,让我们的客户可以使用他们拥有的任何业务逻辑或市场知识来增强和完善推荐。 新的规则功能允许我们的客户继续为他们的客户创造独特的定制体验。这些规则的工作方式与它们在 Algolia 搜索中的工作方式非常相似。总的来说,你可以根据你的商业模式和交易策略对这些建议进行微调。

错过了我们的更新? 观看完整的网上研讨会 了解 Algolia 推荐的新内容,然后 请求演示 亲自体验 Algolia 搜索和推荐。

让合适的人掌握组织知识

原文:https://www.algolia.com/blog/product/whats-organizational-knowledge-and-how-can-you-make-it-accessible-to-the-right-people/

你公司的组织知识怎么样了?换句话说,如果一名员工要离开,他们会给你 留下一个原本有关键信息的大洞吗?

组织知识——随着时间的推移积累起来的知识创造的宝库——是大多数现代商业运作的核心。从循序渐进的文档到宽泛的概念材料,各种类型的知识都是必须重视、收集、保护和共享的资源。这些信息可以影响高层决策,帮助员工避免代价高昂的错误,并确保公司保持在实现目标的轨道上。

咱们聚一聚?

在典型的工作场所,这种知识库是一种被忽视和低估的商品,因为人们有一种误解,认为简单地 将有知识的个人聚集在一起 就足够了。在现实中,员工聚在一起与同事或经理分享个人知识和见解是不够的,例如在一对一的会议上。封装新知识的过程必须更加深入。

为什么企业信息化深度和员工共享能力如此重要?因为虽然公司可能存在了几十年,但对员工和其他贡献者来说却不是这样。随着时间的推移,员工对公司流程、规格和客户信息有了深入的了解。当一个高级别的玩家离开时,如果没有足够的组织知识共享方法,知识产权可能会随着他们一起从公司的秘方中蒸发。这些突然丢失的数据成分会对组织知识的平衡产生负面影响,并严重阻碍进展。

因此,为了让现在和未来的员工继续利用有价值的组织知识,企业必须保存和分享这些知识。

“组织知识”是指什么

短语“组织知识”听起来像是与变得有条理有关的东西,但它不是关于某人在书架上安排书籍或规划产品开发周期方面有多好。

这个概念是由企业管理大师彼得·德鲁克在 20 世纪 80 年代提出的,即“协调和利用组织的知识资源,以创造效益和竞争优势。”或者更简单地说,组织内可记录的集体知识的总和,可用于释放机会。

三种认识方式

管理专家说,组织知识的类型分为三类

显性知识

这是具体的、有据可查的知识:已经写下来或者正式记录下来的公司信息。它通常存储在公司文件中(数字文件或现场文件),任何可能需要它的人都可以轻松访问。

隐性知识

这是应用的显性知识,比如在某个特定的公司职位上工作一段时间后学到的技能。这些信息可以教给新员工或任何需要的人。

隐性知识

隐性知识指的是从某个过程中学到的信息,但不一定记录在任何地方。这种类型的信息通常更难记录和传递给其他人,因为它可能包含直观的方面。

关注原因

尽管有效地输入、保护和分享组织知识被认为是必要的,德勤的一项调查发现缺乏组织知识是“影响公司成功的三大问题之一”

德勤(Deloitte)发现:“如果搜索(信息)很困难,搜索结果没有得到高度重视,员工就会对知识体系失去信任。”。“这反过来使他们不太愿意在这些系统中分享个人知识,从而降低了内容的质量。”

让组织知识无障碍

如果组织知识早就在德鲁克的雷达上,那么在我们这个数据泛滥的世界里,它无疑更加重要。

对数据进行组织和分类是唯一的选择。理想情况下,公司需要集中化的组织 知识管理 来跟上。据记载:根据技术服务行业协会的数据,有效的知识管理将近四分之三的公司的生产率提高了约 20%

那么如何才能让 你的 组织知识更容易获取呢?

以下是专家的推荐:

凿沉筒仓

没有知识管理系统,知识很容易变得孤立:隐藏在某个团队的技术堆栈中,而不是常规地提供给更广泛的公司。这意味着一旦外部员工意识到数据的存在,访问数据可能会很困难,并且其他团队无法从大量信息中受益。

当然,你可以通过要求知识在团队中随时可用来打破知识的孤岛。为了使这种类型的知识保留成为现实,团队间的共享和集中的知识管理存储是关键。

集中起来便于查找

这也许是知识管理最重要的元素。好消息是,你不需要开发一个完整的平台来上传和存放不同类型的知识;您可以通过一个 企业搜索工具 实现跨平台快速查找信息的目的。通过单次搜索 创建对全公司数据 的访问,您可以有效地将过去、现在和未来的信息集中在一个公司内部。

打造知识共享文化

宣传知识共享的好处是一个良好的开端。然而,要推出真正的交易,企业领导人必须更进一步,创造一种完整的组织文化,在这种文化中,知识共享是员工日常训练的一部分,是一个自动发生的内在过程。

当然,这种解决问题的方案不会一蹴而就;它需要持续致力于员工和高管之间的知识共享,以及培养所有团队之间的信任。这也需要一个专门的平台来进行的知识管理。您可以激励这种知识共享(例如,通过奖励发布有益网络研讨会的团队成员),以 鼓励员工 在您组织的知识管理流程中发挥积极作用。

组织知识用例

管理组织知识不仅仅是把有价值的知识从隐藏的地方拿出来。而是利用它来推动创新和帮助业务部门运营。这里有两个虚构的案例研究:一个是电子商务网站,另一个是出版平台。

专柜

Shoppit 在网上销售定制家具。产品团队与销售和营销组织之间的日益脱节导致了质量管理系统的崩溃:产品规格和定价方面的错误正在损害公司的声誉。

管理层对此的回应是引入一个集中的组织知识管理系统,以帮助简化订单管理和销售流程。新系统允许销售团队在与潜在客户进行销售通话时快速检查库存和产品细节,确保他们发布的规格始终是最新和准确的。

这让团队在执行他们的任务时更加自如。一项管理审查得出的结论是,其结果是员工体验的显著改善,这种影响会波及到客户,并可能与帮助实现利润最大化直接相关。

牛逼文章

这家文章分享平台的管理层希望在其网站和应用程序中推广新的自助发布功能,但营销团队仍然依赖开发团队偶尔提供的书面更新。

特别是,管理层希望营销人员能够更轻松地访问新功能和更新的详细信息。通过实现中央 企业搜索 功能,开发者可以继续以同样的方式提交他们的更新。但是这一改变使得营销团队 以及 也可以访问这些信息,这样他们就可以在制作宣传材料和广告方面领先一步。

搜索:知识访问的答案

合适的企业搜索平台可以通过 向任何需要的人提供内部知识 来有效解决知识管理困境。这解决了一个紧迫的问题,但它通常也会产生连锁反应,远远超出快乐的员工和成功的客户体验。

了解合适的 企业搜索 解决方案如何增强内部知识共享,以便您能够改善员工的生活,赢得他们的信任,并使他们能够帮助您发展壮大。从今天开始免费试用

当分配器囤积你宝贵的记忆时

原文:https://www.algolia.com/blog/engineering/when-allocators-are-hoarding-your-precious-memory/

虽然切换到最新的流行框架或语言已经成为工程界的老生常谈,但有时升级是有保证和必要的。对于我们致力于维护核心引擎功能的搜索工程团队来说,这包括升级操作系统版本以获得最新的内核或库功能,以便快速适应我们最新的代码发布。我们总是急切地等待着操作系统的升级,并且已经推动了很长一段时间。

当您处理遍布全球 70 个数据中心的数百台服务器时,在生产环境中升级操作系统可能是一件大事。对于我们的生产服务器,我们目前使用的是 Ubuntu 16.04(四年多前发布的),我们的基础团队(管理所有生产服务器,并确保我们始终有一个超过我们的 SLA 的运行服务)在过去几个月里一直在准备升级到最近的 20.04 长期版本。

但是升级是艰难的

当你改变许多组件的版本时,你需要准备好不愉快的惊喜:内核及其相关驱动程序、操作系统的 C 库、各种库,但也可能是操作系统附带的许多策略、政策、默认配置设置。

升级时我们遇到的一个令人不快的意外是整体内存消耗。一张图表(承蒙波前度量)比其他任何东西都好,下面我让你猜猜“绿色”服务器是什么时候升级到更高的操作系统版本的:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果您设法发现了内存消耗的轻微增加,是的,我们从 10 到 30 GB 的内存消耗(平均 12)转移到 30 到 120 GB 的内存消耗(平均 100 以上)。公平地说,消耗甚至会更高,但我们在这台特定的机器上只有 128GB(绰绰有余,通常用作大页面缓存),内存消耗的下降是当消耗我们宝贵内存的进程要么被我们强制重新加载,要么被愤怒的内核强制屠杀(这有点麻烦,因为它在这里和那里触发了许多警报)时发生的事件。

总而言之,我们有一个问题。作为一家创业公司,我们被期望满足 10x 工程师的刻板印象,但这可能不是我们谈论的 10x。

调查过度的记忆囤积

讽刺的是,我们没有忘记:我们推动系统升级,现在我们要为服务器占用这么多内存负责。嗯,只有一件事要做:我们需要了解为什么升级会有如此巨大的影响。

泄密

我想到的第一个想法是怀疑某种内存泄漏。但是有一个问题:只有最近的 Linux 版本才有。会不会是以前系统上没有满足的条件触发的内存泄漏?

为了验证这一假设,我们通常利用来自 Brendan Gregg 的极其强大的 Linux 性能分析器。每个对性能感兴趣的开发者都应该知道这个工具,我们强烈推荐观看大师亲自做的一些演示

一种典型的方法是连接正在运行的守护进程,并不时地寻找未释放的内存(10 分钟后):

sudo memleak-bpfcc -a --older 600000 --top 10 -p 2095371 120

不幸的是,我们没有看到任何泄漏——即使在此期间该进程吃掉了我们宝贵的 RAM。

所以这不是泄露,而是我们失去了记忆。下一个逻辑疑点是底层内存分配器。

贪婪的分配器

好吧,你可能会感到困惑,因为我们这里有几个分配器。作为一名开发人员,您可能听说过 malloc,它通常位于 C 库(glibc)中。我们的进程使用的是默认的 glibc 分配器,它可以被看作是任何大小的内存分配的零售商。但是 glibc 本身不能分配内存,只有内核可以。内核是批发商,只卖大批量。所以分配器通常会从内核中获得大块的内存,并按需分配。当释放内存时,它会合并空闲区域,并且通常会通过调用内核来释放大块内存。

但是配置者可以改变他们的策略。您可能有几个零售商,以适应在一个流程中运行的多个线程。并且每个零售商可以决定保留一些释放的大内存块供以后重用。零售商可能会变得贪婪,可能会拒绝释放他们的库存。

为了验证这个新的假设,我们决定直接使用 glibc 分配器,调用它非常特殊的“垃圾收集器”:

MALLOC_TRIM(3)             Linux Programmer's Manual            MALLOC_TRIM(3)

NAME
       malloc_trim - release free memory from the top of the heap

SYNOPSIS
       #include <malloc.h>

       int malloc_trim(size_t pad);

DESCRIPTION
       The  malloc_trim()  function attempts to release free memory at the top
       of the heap (by calling sbrk(2) with a suitable argument).
       The pad argument specifies the amount of free space to leave  untrimmed
       at the top of the heap.  If this argument is 0, only the minimum amount
       of memory is maintained at the top of  the  heap  (i.e.,  one  page  or
       less).   A nonzero argument can be used to maintain some trailing space
       at the top of the heap in order to allow future allocations to be  made
       without having to extend the heap with sbrk(2).

RETURN VALUE 
       The  malloc_trim()  function  returns 1 if memory was actually released 

一个简单而笨拙的解决方案是用调试器(gdb -p pid)连接到进程,并手动调用 malloc_trim(0)。结果不言自明:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

橙色是升级后的服务器内存消耗,另外两条曲线是以前的操作系统版本。09:06 左右的突然下跌是对 malloc_trim function的叫牌。

为了解决这个问题,我们还使用了另一个非常有用的特定于 glibc 的函数,转储分配器的一些状态:

MALLOC_INFO(3)             Linux Programmer's Manual            MALLOC_INFO(3)

NAME
       malloc_info - export malloc state to a stream

SYNOPSIS
       #include 

       int malloc_info(int options, FILE *stream);

DESCRIPTION
       The  malloc_info()  function  exports  an XML string that describes the
       current state of the memory-allocation implementation  in  the  caller.
       The  string  is printed on the file stream stream.  The exported string
       includes information about all arenas (see malloc(3)).
       As currently implemented, options must be zero.

RETURN VALUE
       On success, malloc_info() returns 0; on  error,  it  returns  -1,  with
       errno set to indicate the cause.

是的,这里再次附上并直接使用 gdb:

(gdb) p fopen("/tmp/debug.xml", "wb")
$1 = (_IO_FILE *) 0x55ad8b5544c0
(gdb) p malloc_info(0, $1)
$2 = 0
(gdb) p fclose($1)
$3 = 0
(gdb) 

XML 转储确实提供了有趣的信息。有将近一百个堆(“经销商”),其中一些显示了令人烦恼的统计数据:

<heap nr="87">
  <sizes>
    ... ( skipped not so interesting part )
    <size from="542081" to="67108801" total="15462549676" count="444"/>
    <unsorted from="113" to="113" total="113" count="1"/>
  </sizes>
<total type="fast" count="0" size="0"/>
<total type="rest" count="901" size="15518065028"/>
<system type="current" size="15828295680"/>
<system type="max" size="16474275840"/>
<aspace type="total" size="15828295680"/>
<aspace type="mprotect" size="15828295680"/>
<aspace type="subheaps" size="241"/>
</heap> 

在浏览了 glibc 的源代码之后,“rest”部分似乎是自由块:

fprintf (fp,
"<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
"<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
"<total type=\"mmap\" count=\"%d\" size=\"%zu\"/>\n"
"<system type=\"current\" size=\"%zu\"/>\n"
"<system type=\"max\" size=\"%zu\"/>\n"
"<aspace type=\"total\" size=\"%zu\"/>\n"
"<aspace type=\"mprotect\" size=\"%zu\"/>\n"
"</malloc>\n",
total_nfastblocks, total_fastavail, total_nblocks, total_avail,
mp_.n_mmaps, mp_.mmapped_mem,
total_system, total_max_system,
total_aspace, total_aspace_mprotect); 

并且占用了 901 个块,超过 15GB 的内存。总体统计数据与我们看到的一致:

<total type="fast" count="551" size="35024"/>
<total type="rest" count="511290" size="137157559274"/>
<total type="mmap" count="12" size="963153920"/>
<system type="current" size="139098812416"/>
<system type="max" size="197709660160"/>
<aspace type="total" size="139098812416"/>
<aspace type="mprotect" size="140098441216"/> 

是的,这是 137GB 未被系统回收的空闲内存。说说贪心吧!

用 glibc 调优内部

在这个阶段,我们联系了glibc 邮件列表来提出这个问题,如果这被证实是 glibc 分配器的问题,我们将很乐意提供任何信息(在撰写本文时,我们还没有了解到任何新的情况)。

与此同时,我们尝试使用 GLIBC_TUNABLES特性(通常是glibc.malloc.trim_thresholdglibc.malloc.mmap_threshold)来调整内部组件,但没有成功。我们还试图禁用最新的特性,比如线程缓存(glibc.malloc.tcache_count=0),但显然每线程分配缓存是针对小块(最多几百字节)的。

从这里,我们设想了几个前进的选择。

【临时】修复-垃圾收集器

定期调用 malloc_trim 是一种相当肮脏的临时手段,但看起来相当有效,每次运行有时需要几秒到 5 分钟:

{
  "periodMs": 300000,
  "elapsedMs": 1973,
  "message": "Purged memory successfully",
  "rss.before": 57545375744,
  "rss.after": 20190265344,
  "rss.diff": -37355110400
} 

值得注意的是,GC 时间似乎与累积的空闲空间成线性关系。将时间段除以 10 还会将回收的内存和花费在 GC 中的时间除以相同的因子:

{
  "periodMs": 30000,
  "elapsedMs": 193,
  "message": "Purged memory successfully",
  "rss.before": 19379798016,
  "rss.after": 15618609152,
  "rss.diff": -3761188864,
}

调用 GC 对这个图的影响相当明显:
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

绿色表示新的 glibc,蓝色表示以前的版本。橙色曲线是带有常规 GC 的 forcer glibc。

嵌入新 glibc 的服务器缓慢漂移,占用越来越多的空间(这里几乎是 60GB)。

下午 4:00,GC 在新的(绿色)glibc 代码中启动,您会看到内存消耗统计数据很低。

下面的绿色曲线展示了将 GC 周期从 5 分钟更改为 30 秒的影响:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

最后,我们还成功测试了 free 的一个覆盖,它在释放一定量的内存时触发 trim 操作:

#include 
#include 

#if (!__has_feature(address_sanitizer))

static std::atomic freeSize = 0;
static std::size_t freeSizeThreshold = 1_Gi;

extern "C"
{
    // Glibc "free" function
    extern void __libc_free(void* ptr);

    void free(void* ptr)
    {
        // If feature is enabled
        if (freeSizeThreshold != 0) {
            // Free block size
            const size_t size = malloc_usable_size(ptr);

            // Increment freeSize and get the result
            const size_t totalSize = freeSize += size;

            // Trigger compact
            if (totalSize >= freeSizeThreshold) {
                // Reset now before trim.
                freeSize = 0;

                // Trim
                malloc_trim(0);
            }
        }

        // Free pointer
        __libc_free(ptr);
    }
};
#endif 

所有这些测试都是在几个集群上执行的,以确认不同的工作负载。

GC 的成本是多少?我们在 CPU 使用率方面没有看到任何负面影响(特别是系统 CPU 使用率),而且,看一下 malloc_trim implementation,似乎每个区域都被单独锁定并逐一清理,而不是有一个“大锁”模型:

int
__malloc_trim (size_t s)
{
  int result = 0;

  if (__malloc_initialized < 0) ptmalloc_init (); mstate ar_ptr = &main_arena; do { __libc_lock_lock (ar_ptr->mutex);
      result |= mtrim (ar_ptr, s);
      __libc_lock_unlock (ar_ptr->mutex);

      ar_ptr = ar_ptr->next;
    }
  while (ar_ptr != &main_arena);

  return result;
}

专用分配器

使用不同的分配器(可能包括 jemalloctcmalloc )是另一种有趣的可能性。但是转移到一个完全不同的分配器代码有一些缺点。首先,它需要长时间的验证,在半生产和生产阶段。差异可能与我们通常拥有的非常具体的分配模式有关(我可以保证,我们有时真的会有奇怪的分配模式)。因为我们使用的是不太常见的 C++库(来自 llvm 的libc++),将这种不太常见的情况与更不常见的分配器混合在一起可能会在生产中产生全新的模式。而所谓的,意味着可能存在其他人之前没有发现的 bug。

调查 bug

潜在的缺陷一点也不明显。

竞技场泄漏

2013 年填补的一个错误, malloc/free 无法在 main_arena 不连续时将内存归还给内核,看起来有点像我们正在经历的问题,但这在我们的系统中并不是什么新问题,尽管在 glibc 2.23 中有 malloc_trim回收内存,但我们当前问题的数量级完全是前所未有的。然而,这个错误仍然悬而未决,可能只影响到角落的情况。

竞技场数量

竞技场的增加可能是另一种可能性。在相同的硬件和环境下,我们从 2.23 中的 57 个竞技场增长到 2.31 中的 96 个竞技场。虽然这是一个显著的增长,但这一数量级太大,不足以成为触发因素。Alex Reece 在他的博客上建议 glibc 中的竞技场“泄漏”,通过 glibc.malloc.arena_max可调参数将竞技场的数量减少到内核的数量。当您的进程没有比内核更多的线程时(在我们的例子中是这样),这完全有意义,并且在理论上可以减轻浪费内存的问题。不幸的是,实际情况并非如此:将竞技场的数量从 96 个减少到 12 个仍然存在同样的问题:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

甚至还原到 1(也就是主 sbrk() 竞技场),其实:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

竞技场门槛

有趣的是,每个增长的竞技场过一会儿就停止增长,达到进程历史中分配的最大内存。自由但未发布的块可能很大(高达千兆字节),这相当令人惊讶,因为这些块应该由 mmap 提供服务。

待续

我们将继续尝试不同的场景,最好有一天能重现一个平凡的案例,帮助修复根本原因。与此同时,我们有一个变通方法(一种 GC 线程),它远非完美,但将允许我们继续前进。

外卖

升级操作系统和库具有潜在的影响,但这些影响常常被忽视。限制风险可以包括在一段时间内一个接一个地升级不同的组件(例如将内核或链接库升级到最新的组件),每次升级的时间足够长,以检测回归(内存或 CPU 使用、行为变化、不稳定性……)。更有规律地升级也是有帮助的另一点(一次升级两个系统版本可能不是最安全的选择)。最后,执行滚动升级并仔细查看收集的指标集应该是健康的生产部署过程的一部分。我们当然已经学到了这些经验,并将在今后的流程中加以应用。

数字市场中的白色标签和配对

原文:https://www.algolia.com/blog/product/white-labeling-and-matchmaking-technology-in-a-growing-digital-marketplace/

当公司互相介绍技术时,就会出现白标和配对。称之为技术口碑。这些交易在市场上尤其普遍。考虑一下在线市场的标准组成部分:搜索、发现、订购、支付和交付。任何由这些功能组成的网站都创建了一个软件生态系统,它可以——也就是说,被其他公司复制来推出自己的市场。例如,用于运营亚马逊和 Etsy 等市场的软件可以激发专门从事硬币或稀有书籍的较小市场。电子商务市场可以催生流媒体平台。

一般来说,一个标准的市场生态系统可以被复制并单独运行,以驱动 任何 市场,该市场提供某种形式的搜索、发现、订购、支付和交付,以及评级和推荐等其他功能。一个可共享的生态系统向其他企业介绍了一种做生意的方式。它可以发生在前端或后端——一个公司可以分享其网站的用户界面技术或其后端基础设施。在阿尔戈利亚,我们看到了两者的变化。

一个市场生态系统

市场是出售各种商品的任何物理空间或数字平台。亚马逊、Ebay 和 Etsy 是市场——销售书籍、服装、家具、汽车等等的单一平台。

在引擎盖下,一个市场可以由一个单一的“”架构和许多移动的组件组成。对任何稳定的生态系统来说,重要的是它如何选择和管理它的活动部分。考虑管理网站的 搜索支付 功能的软件组件。对于搜索,两家公司可能使用相同的组件,但配置不同。对于支付,人们可以使用 Stripe 来管理支付,另一个 PayPal。无头架构通过使用即插即用的软件组件系统(称为 API)来实现这一点,该系统使不同的组件能够相互交互。最好的 API 是第三方专家精心雕琢的珠宝。市场工程师的工作是将这些 API 集成到他们现有的软件架构中,并对它们进行配置以满足他们公司特定的业务需求。

市场生态系统中的白标和牵线搭桥

一旦架构构建完成,组件集成和配置完成,你就有了一个可运营的市场。这就是 白色标签 和配对的用武之地:一个市场网站通过分享它的组成部分来“激励”不同的企业。这种分享是通过合作或白标完成的。

在这篇文章中,我们将看到一个成功的市场是如何为多个衍生市场铺平道路的。一些衍生产品将使用相同的服务器,但更换组件;其他人会将生态系统复制到他们自己的服务器上,并建立独特的网站。本系列的下一篇文章将深入探讨这一切是如何实现的技术细节。

第一步:构建市场生态系统

你可以用 一张桌子 、两把或者 三把 椅子和一些打开的笔记本电脑来搭建一个集市。在我们的场景中,有两个企业家有销售他人产品的天赋。他们建立了一个轰动一时的砖臼市场,供小镇工匠和古董商出售他们的商品。他们在全国范围内销售,人们不远万里来到他们的商店发现隐藏的宝藏。这就是成功的实体市场的定义。

业主是动态的。一个是当地艺术家和经销商的精明推动者,她用自己迷人的个性和商业智慧开创了这项事业。她的合作伙伴是一位工程奇才,他来了,为他们铺好了砖和砂浆,还建立了后端业务流程,这有助于使他们的市场成为当地艺术家和经销商的圣地。

联合创始人创建在线数字市场

很长一段时间,工程师都有上线的想法。像亚马逊和 Etsy 这样的在线市场让她相信自己的方向是正确的。Covid 19让她别无选择。她开发了一个强大的软件生态系统,拥有漂亮的网页设计,为渴望发现难以找到的艺术品和古董的锁定公众创造了理想的用户体验。

随着他们在线业务的增长,他们的技术和业务合并了。 商品销售内容发现 结合简化的软件流程进行订购和交付。该平台为消费者(需求)和供应商(供应)的高需求提供了理想的搜索和发现体验。凭借天赋和不断的迭代,这些女性发展了她们的数字市场,成为当地艺术和古董的一站式商店。

所有这些都配有一张桌子和两把椅子,现在是乌木制成的。

下一步:拓展业务,共享生态系统

人才孕育人才。一个企业家的突破影响下一代。在这种情况下,一个由强大的生态系统和在线销售敏锐度构建的在线市场带来了衍生产品和合作伙伴关系。

他们的第一次分拆:收藏家市场

在一个场景中,一个硬币收藏家上升到了搜索结果的顶部。每次搜索总是包括他的项目。女性在线市场把他放在一个更大的地图上。但他觉得这并没有影响到他的最佳观众——一群需要更多细节、日期和历史的收藏家。他们需要一种适合钱币收藏的在线搜索和发现体验。他的客户喜欢看到每一个瑕疵和完美,尽可能地接近硬币。

将业务与软件脱钩

这打破了更一般化的市场模式。他需要的是不同的用户界面——但事实证明,不是不同的生态系统/基础设施。因此,他联系了工程师,他们提出了一个计划:她的生态系统,在她的服务器上,仍将管理他的后端数据和业务流程(如搜索和订购),但她会 将其与前端 分离,从而使他能够构建自己的用户界面,在同一引擎上运行:两个非常不同的前端界面集成到一个后端基础架构中。

因此,主要的区别在于搜索和发现体验。他想要一种直接面向所有收藏者的用户体验,而不仅仅是钱币收藏者。因为这将是一个收藏各种收藏品的——邮票、漫画书、挂毯、黑胶唱片。

能看出做媒吗?

收集者认识到原来的 marketplace 的软件组件可以运行任何 marketplace,他只需要根据自己的业务进行定制。这是一个公司 A 向公司 b 介绍独立 API 组件的例子

他们的下一个副产品:与一个流媒体平台合作

一名旧黑胶唱片经销商同时也是当地音乐圈的狂热爱好者。像收藏家一样,他为音乐家和表演艺术家设想了一个不同的市场。他的灵感来自 Spotify 和 YouTube,但他认识到女性市场电子商务生态系统可以帮助他销售和播放其他人的音乐。因此,他联系了这位工程师,并了解到,只需进行一些修改,她的生态系统就可以驱动他的流媒体平台。她解释了可组合 API 驱动的架构如何使他能够插入更适合流媒体的组件——如存储和流媒体或管理艺术家版税的软件。否则,其余的都一样。她向他展示了搜索、订购、支付和交付的四部分模式是如何保持核心地位的(其中“交付”被改为“流媒体和/或交付”)。但要做到这一点,他需要购买一些自己的组件。

他们的第三个副产品:白色标签(生态系统成为产品)

此时,女人们看到了一个机会:为什么不 推广 她们的软件架构并出售它 无品牌白标 涉及一家企业向其他企业出售其软件的通用版本,这些企业随后在自己的平台上运行该软件,并完全控制其组件和配置。

他们的第一个客户是一群已经在女装市场上出售艺术品的当代艺术品经销商。他们想拓展业务,因为他们的艺术鉴赏家观众需要完全不同的用户体验。他们遵循收集器的相同伙伴关系模型,使用相同的基础设施,但是改变了接口。然后,由于一些最大的艺术家的巨大价格和销量,他们的业务利润激增。他们需要独占性以及对其商业模式和基础设施的更多控制。因此,他们购买了一个白标版本的生态系统,并将其变成自己的,将自己的组件与原始市场的组件进行混合和匹配。天作之合。

下一步

还有许多其他的衍生可能性。例如, 企业撮合 ,A 公司与其他公司共享其 后台系统 的组件,如执行内部会计、库存控制和客户关系的 API。生态系统匹配的逻辑也是如此——一家公司创建了一个包含多个组件的系统,将其公开给其他公司(通常是合作伙伴和供应商),然后其他公司复制流程和组件,替换一些组件,配置其他组件。

我确信在这一点上,更注重技术的读者会问——这一切听起来非常浪漫,但细节中的魔鬼不是吗?事实上,设计、编码和配置中有一些细节需要仔细考虑——但它们并不一定非常复杂。这是任何 API 驱动的无头架构的要点:大多数细节已经由构建第三方 API 的专家处理了。

请继续关注本系列文章的第 2 部分,它将更深入地探讨生态系统,重点关注搜索和发现组件。我们描述了使上述场景成为可能的内容管理(即,可搜索的索引)和前端库。

Algolia 搜索和发现与无头生态系统紧密结合。要了解它如何转变您的数字策略, 免费注册 并亲自查看。或者今天从我们的搜索专家那里获得一个定制的 演示

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值