求双根号式子的

最近看到一道初中题,发现没有思路,确实有点尴尬,所以今天在此我在这进行一个思维概括吧算是。

          首先何为双根号式子?

如:y=\sqrt{x^2+9}+\sqrt{x^2-8x+17}

      y=\sqrt{x^2+4}+\sqrt{x^2-8x+17}

这一类式子要让你求最小值,在我现在的思想中,求最值?不就是求导吗,但面对这个题目,求导却是非常复杂的。

接下来就来说说这种题的方法与思路。表面上是函数问题,实际上是几何问题。

首先我们可以对其进行配方变成:y=\sqrt{x^2+\left( 0-2 \right) ^2}+\sqrt{\left( x-4 \right) ^2+\left( 0-1 \right) ^2} \\ y=\sqrt{x^2+\left( 0-3 \right) ^2}+\sqrt{\left( x-4 \right) ^2+\left( 0-1 \right) ^2}

也就是我们所知道的凑完全平方

之后变成了我们熟知的将军饮马问题,该题求最小值就是求f+g

之后即如图,红线h就是我们所求的最小值。

之后碰到诸如此类题,我们都可以用该方法求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值