1、取消自动进入conda base环境、重新进入base环境
# 退出base环境:在terminal或者.bashrc文件中把conda自动启动设置为 false
conda config --set auto_activate_base false
# 重新进入base环境
source ~/anaconda3/bin/activate
# ubuntu系统下,也可通过:
source activate
2、conda常用命令
# 1.查看conda环境已创建好的虚拟环境
conda env list
# 2.使用conda新建一个虚拟环境
conda create -n env_name 或者 conda create --name env_name
# 3.查看安装的包
conda list
# 4.检查更新当前conda
conda update conda
# 5.激活并进入conda环境(ubuntu与Macos需要将 conda 替换为 source)
conda activate env_name
# 6.退出conda环境
conda deactivate
# 7.删除整个虚拟环境
conda remove -n env_name(虚拟环境名称) --all
# 8.删除虚拟环境中的某一个包
conda remove --name env_name package_name
3、安装cupy
CuPy是一个开源矩阵库,用于NVIDIA CUDA加速。CuPy使用Python提供GPU加速计算。CUPY使用CUDA相关库,包括 CuBLAS、CUDNN、Curand、CuoSver、CuPaSeSE、Cufft和NCCL,以充分利用GPU架构。
# For CUDA 8.0
pip install cupy-cuda80
# For CUDA 9.0
pip install cupy-cuda90
# For CUDA 9.1
pip install cupy-cuda91
# For CUDA 9.2
pip install cupy-cuda92
# For CUDA 10.0
pip install cupy-cuda100
# For CUDA 10.1
pip install cupy-cuda101
# Install CuPy from source
pip install cupy