量子保真度

计算两个量子态保真度的公式

F ( ρ , σ ) = ( Tr ρ σ ρ ) 2 = ( Tr σ ρ σ ) 2 = F ( σ , ρ ) F(\rho,\sigma)=\left(\text{Tr}\sqrt{\sqrt{\rho}\sigma\sqrt{\rho}}\right)^2=\left(\text{Tr}\sqrt{\sqrt{\sigma}\rho\sqrt{\sigma}}\right)^2=F(\sigma,\rho) F(ρ,σ)=(Trρ σρ )2=(Trσ ρσ )2=F(σ,ρ)

纯态之间的保真度(两个状态向量)

if rho.ndim == 1 and sigma.ndim == 1:
    return np.abs(np.inner(rho.conj().T, sigma)) ** 2

F ( ρ , σ ) = ∣ ⟨ ψ ρ ∣ ψ σ ⟩ ∣ 2 F(\rho,\sigma)=\left|\langle\psi_\rho|\psi_\sigma\rangle\right|^2 F(ρ,σ)=ψρψσ2

纯态与混态之间的保真度(状态向量与密度矩阵)

if rho.ndim == 1 and sigma.ndim == 2:
    return np.real(rho.conj().T @ sigma @ rho)

F ( ρ , σ ) = T r ( ⟨ ψ ρ ∣ σ ∣ ψ ρ ⟩ ) F(\rho,\sigma)=\mathrm{Tr}(\langle\psi_\rho|\sigma|\psi_\rho\rangle) F(ρ,σ)=Tr(⟨ψρσψρ⟩)

混态与纯态之间的保真度(密度矩阵与状态向量)

if rho.ndim == 2 and sigma.ndim == 1:
    return np.real(sigma.conj().T @ rho @ sigma)

F ( ρ , σ ) = T r ( ⟨ ψ σ ∣ ρ ∣ ψ σ ⟩ ) F(\rho,\sigma)=\mathrm{Tr}(\langle\psi_\sigma|\rho|\psi_\sigma\rangle) F(ρ,σ)=Tr(⟨ψσρψσ⟩)

混态之间的保真度(两个密度矩阵)

return np.real(np.trace(rho @ sigma) + 2 * np.sqrt(det(rho) * det(sigma)))

F ( ρ , σ ) = Tr ( ρ σ ) + 2 ∗ ∣ ρ ∣ ∣ σ ∣ F(\rho,\sigma)=\text{Tr}(\rho\sigma)+2*\sqrt{|\rho||\sigma|} F(ρ,σ)=Tr(ρσ)+2ρ∣∣σ
|*|表示矩阵表示的行列式的值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值