关于多元正态分布的条件概率密度

本文探讨了多元正态分布的密度函数,并详细推导了在已知某些分量的情况下,剩余分量的条件密度分布。通过一系列数学运算,得出给定X1到Xn-1时,Xn的条件密度表达式,为理解和应用多元正态分布的条件概率提供理论支持。
摘要由CSDN通过智能技术生成

多元正态分布

多元正态分布的密度函数如下 :

fx(x1,...xn)=1(2π)k|Σ|1/2exp(12(xμ)TΣ1(xμ)) (1)

其对应的矩母函数(也有称动差函数)为 exp(μTt+12tTΣt) 。事实上,如果随机向量 [X1,...Xn] 满足上面的动差函数,那么我们就称随机向量 [X1,...Xn] 服从多元高斯分布。具体地证明可以看 这里

多元正态分布的条件密度

令随机向量 [X1,...Xn] 服从多元高斯分布。我们可以推导 Xn 在给定 X1,...Xn1 的情况下的条件密度分布:

f(x
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值