由OpenAI开发的ChatGPT已经改变了我们在线交流的方式。作为一个通用的聊天机器人,ChatGPT只能回答一般性的问题。但是,如果您能让它回答与您的业务相关的问题,它将变得更加有用。为了做到这一点,您需要对ChatGPT进行训练,让它了解您的数据。
EmbedAI是一个无代码平台,可以基于您的业务数据创建AI聊天机器人。这包括来自网页、PDF、Notion文档或YouTube视频的数据,使EmbedAI能够适应各种信息来源。
在本博客文章中,我们将展示如何使用LlamaIndex和EmbedAI来训练ChatGPT模型,帮助您创建一个根据您业务需求定制的高效AI聊天机器人。
与您的数据用例对话
训练基于您的数据的聊天机器人可以有多种有用的方式,包括:
-
客户支持机器人:管理关于产品的常见问题,高效解决客户支持查询。
-
公司搜索引擎:快速查找内部公司文件和信息,提高工作效率。
-
个性化学习助手:根据特定课程内容提供定制的教育支持和学习指导。
-
技术支持助手:提供针对复杂软件问题的深入帮助,从故障排除到使用技巧。
-
医疗助手:根据医学文献和常见问题解答提供一般健康建议和信息。
-
金融聊天机器人:通过对金融数据进行训练,提供有关产品、市场趋势和投资策略的建议。
让我们深入了解如何创建与各种数据源(如PDF、Notion文档、视频、网页等)集成的聊天应用程序。
案例1:为您的网站定制ChatGPT
要在您的网站内容上训练ChatGPT,我们需要从所有相关网页中提取内容。具体步骤如下:
-
从您的网站提取所有URL,例如从站点地图中提取
-
只包括您需要训练的相关URL
-
使用LlamaIndex的SimpleWebPageReader从这些URL下载内容
以下是一些示例代码:
一旦数据准备好了,可以使用LlamaIndex的VectorStoreIndex类对这些文档进行AI聊天机器人的训练。
要在您的网站上创建一个无需编码的ChatGPT聊天机器人,可以使用下面概述的EmbedAI,该工具在内部使用LlamaIndex:
#案例2:为您的PDF文档定制ChatGPT
如果您的业务特定数据存储在PDF文档中,并且希望创建一个可以提取其中信息的聊天机器人,我们可以使用PDFMiner库和LlamaIndex来实现。这次的步骤如下:
-
上传您的PDF并将其存储在云端
-
安装PDFMiner库
-
使用LlamaIndex加载器获取上传的PDF并提取文档文本
下面是使用LlamaIndex训练的AI聊天机器人的代码示例。
如果您想在PDF内容上创建一个ChatGPT聊天机器人而无需编码,您可以使用EmbedAI,如下面的演示所示,该演示内部使用LlamaIndex。
#案例3:为您的视频定制ChatGPT
通常,有价值的信息嵌入在视频中,对于寻找信息的用户来说并不容易获取。然而,通过训练一个AI聊天机器人使用这些内容,它可以成为用户的一个非常丰富的资源,极大地增强他们的体验。
让我们看看如何从我们的YouTube视频中获取信息,以使用LlamaIndex训练一个AI聊天机器人。步骤如下:
-
找到您的频道ID
-
安装
scrapetube
并将其传递给您的频道ID以获取视频列表 -
安装YouTube转录API并将上述视频URL传递给LlamaIndex加载器以获取文档列表
代码如下所示:
案例4:为Notion定制ChatGPT
在许多现代公司中,它们的大部分内容都存储在Notion中。随着内容的增长,快速定位特定信息变得越来越具有挑战性。为了解决这个问题,我们可以为Notion开发一个聊天机器人,以简化查找所需信息的过程。
准备数据的步骤:
-
根据它们的说明,从Notion获取访问令牌
-
使用Notion API,从Notion解析数据并生成LlamaIndex文档
-
使用VectorStoreIndex对这些文档进行训练聊天机器人
如果您希望以无代码方式在Notion文档上训练聊天机器人,可以使用下面的演示中使用的EmbedAI,它在内部使用LlamaIndex:
这并不止于此。使用EmbedAI,您可以连接来自更多来源的数据,如Google Docs、Shopify,甚至可以使用Zapier连接6000多个工具并与其数据进行交互。您可以通过从LlamaHub选择特定的数据连接器来实现这一点。
构建EmbedAI时的挑战
-
在EmbedAI中,与Notion等数据源连接时,数据可能会经常变化,需要自动刷新。因此,数据需要定期刷新以添加新文档或编辑现有文档,这需要在内部处理。同样,在索引网站数据时,可以定期刷新。LlamaIndex使处理这些情况变得容易。LlamaIndex有一个处理连续摄入的指南。
-
在处理包含表格的PDF内容时,查询EmbedAI中的表格数据是一个重大问题。简单的分块可能会产生次优结果,甚至产生幻觉。LlamaIndex提供了处理同时包含文本和表格的PDF的指南,并在查询时实现最佳结果。
-
在EmbedAI中进行Shopify集成时,需要混合搜索,因为我们不仅需要在产品描述上进行搜索,还需要在产品元数据上进行搜索。因此,需要结合语义搜索和关键词搜索来获得最佳结果。LlamaIndex提供了一个简单的框架来构建混合搜索应用程序,例如这个示例。
自定义训练的聊天机器人可以帮助您的业务
使用自己的数据训练ChatGPT为您的业务提供了重要优势。从使用训练有关特定产品知识的机器人增强客户支持到创建复杂的公司搜索引擎,应用程序多种多样且具有影响力。LlamaIndex提供了许多抽象来帮助构建基于您的数据训练的自定义聊天机器人,并且我们在EmbedAI中广泛使用它们。对于那些寻求以无代码方式开发根据其数据定制的AI聊天机器人的人来说,从EmbedAI开始是一个简单的选择,我们鼓励您尝试一下。