GoogleNet

1.背景

GoogLeNet在2014年由Google团队提出,斩获当年ImageNet竞赛中Classification Task (分类任务) 第一名。

2.网络详解

在这里插入图片描述

  • 网络中的亮点:

    1.引入了Inception结构(融合不同尺度的特征信息)

    2.使用1*1的卷积核进行降维以及映射处理

    3.添加两个辅助分类器帮助训练

    4.丢弃全连接层,使用平均池化层(大大减少模型参数)

    在这里插入图片描述

上图为Inception的初始版本,与之前学习的网络相比,之前学习的网络都是串联结构,GoogleNet是并联结构。

在这里插入图片描述

上图增加了三个1*1的卷积核,使得特征矩阵的深度降低,极大的减少了参数,进而减少了计算量

Inception输出直接按深度拼接,所以每个分支所得的特征矩阵高和宽必须相同

在这里插入图片描述

上图为添加的两个辅助分类器

  • 网络结构参数
    在这里插入图片描述

参数说明:

type:网络中每层的结构名

patch size/stride:该层的结构参数 如7*7/2,卷积核大小为7×7,stride=2

output size:该层输出的特征矩阵的大小

depth:该层对应的结构有几个 如depth=2,表示经过两层卷积层

后面的几列:表示Inception的一些结构配置

-辅助分类器

在这里插入图片描述

论文原文:
在这里插入图片描述

AveragePool:滤波器大小(5,5),stride=3,输出:(4a)4×4×512,(4d)4×4×528

Conv:1×1卷积、卷积核数量128,步长为1,RELU激活

FC:(4×4×128,1024),RELU

FC:(1024,1000),RELU

  • 使用1×1卷积降维

    在这里插入图片描述

在这里插入图片描述

3.代码复现

model.py

import torch.nn as nn
import torch
import torch.nn.functional as F


class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:    # eval model lose this layer
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:    # eval model lose this layer
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:   # eval model lose this layer
            return x, aux2, aux1
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小
        )

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            # 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue
            # Please see https://github.com/pytorch/vision/issues/906 for details.
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)   # 保证输出大小等于输入大小
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x num_classes
        return x


class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x

train.py

import os
import sys
import json

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.optim as optim
from tqdm import tqdm

from model import GoogLeNet

def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    #定义图片预处理的transform
    data_transform = {
        "train":transforms.Compose([
             transforms.RandomResizedCrop(224),
             transforms.RandomHorizontalFlip(),
             transforms.ToTensor(),
             transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ]),
        "val":transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])
    }
    data_root = os.path.abspath(os.path.join(os.getcwd(),"../"))
    #print(data_root)
    image_path = os.path.join(data_root,"data_set","flower_data")
    #print(image_path)
    assert os.path.exists(image_path),"{} path does noet exist.".format(image_path)
    train_dataset = datasets.ImageFolder(root=os.path.join(image_path,"train"),transform=data_transform["train"])
    train_num = len(train_dataset)
    # {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    # write dict into json file
    json_str = json.dumps(cla_dict, indent=4)
    with open('class_indices.json', 'w') as json_file:
        json_file.write(json_str)
    batch_size = 32
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))
    train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=nw)
    val_datasets = datasets.ImageFolder(root=os.path.join(image_path,"val"),transform=data_transform["val"])
    val_loader = torch.utils.data.DataLoader(val_datasets,batch_size=batch_size,shuffle=True,num_workers = nw)
    val_num = len(val_datasets)

    print("using {} images for training, {} images for validation.".format(train_num,
                                                                           val_num))
    net = GoogLeNet(num_classes=5, aux_logits=True, init_weights=True)
    # 如果要使用官方的预训练权重,注意是将权重载入官方的模型,不是我们自己实现的模型
    # 官方的模型中使用了bn层以及改了一些参数,不能混用
    # import torchvision
    # net = torchvision.models.googlenet(num_classes=5)
    # model_dict = net.state_dict()
    # # 预训练权重下载地址: https://download.pytorch.org/models/googlenet-1378be20.pth
    # pretrain_model = torch.load("googlenet.pth")
    # del_list = ["aux1.fc2.weight", "aux1.fc2.bias",
    #             "aux2.fc2.weight", "aux2.fc2.bias",
    #             "fc.weight", "fc.bias"]
    # pretrain_dict = {k: v for k, v in pretrain_model.items() if k not in del_list}
    # model_dict.update(pretrain_dict)
    # net.load_state_dict(model_dict)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(),lr=0.0003)

    epoches = 1
    best_acc =0.0
    save_path = './googleNet.pth'
    train_steps = len(train_loader)
    for epoche in range(epoches):
        #train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step,data in enumerate(train_loader):
            images,labels = data
            optimizer.zero_grad()
            logits,aux_logits2,aux_logits1 = net(images.to(device))
            loss0 = loss_function(logits,labels.to(device))
            loss1 = loss_function(aux_logits2,labels.to(device))
            loss2 = loss_function(aux_logits1,labels.to(device))

            loss = loss0 +0.3*loss1+0.3*loss2
            loss.backward()
            #print statistics
            running_loss+=loss
            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoche+1,epoches,loss)
        #validate
        net.eval()
        acc = 0.0
        with torch.no_grad():
            val_bar = tqdm(val_loader,file=sys.stdout)
            for val_data in val_bar:
                images,labels = val_data
                outputs = net(images.to(device))
                predict_y = torch.max(outputs,dim=1)[1]
                acc+=(predict_y==labels.to(device)).sum().item()
        val_accurate = acc/val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoche + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')
if __name__ == '__main__':
    main()

predict.py

import os
import json

import torch
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt

from model import GoogLeNet


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    data_transform = transforms.Compose(
        [transforms.Resize((224, 224)),
         transforms.ToTensor(),
         transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

    # load image
    img_path = "../tulip.jpg"
    assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path)
    img = Image.open(img_path)
    plt.imshow(img)
    # [N, C, H, W]
    img = data_transform(img)
    # expand batch dimension
    img = torch.unsqueeze(img, dim=0)

    # read class_indict
    json_path = './class_indices.json'
    assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path)

    with open(json_path, "r") as f:
        class_indict = json.load(f)

    # create model
    model = GoogLeNet(num_classes=5, aux_logits=False).to(device)

    # load model weights
    weights_path = "./googleNet.pth"
    assert os.path.exists(weights_path), "file: '{}' dose not exist.".format(weights_path)
    missing_keys, unexpected_keys = model.load_state_dict(torch.load(weights_path, map_location=device),
                                                          strict=False)

    model.eval()
    with torch.no_grad():
        # predict class
        output = torch.squeeze(model(img.to(device))).cpu()
        predict = torch.softmax(output, dim=0)
        predict_cla = torch.argmax(predict).numpy()

    print_res = "class: {}   prob: {:.3}".format(class_indict[str(predict_cla)],
                                                 predict[predict_cla].numpy())
    plt.title(print_res)
    for i in range(len(predict)):
        print("class: {:10}   prob: {:.3}".format(class_indict[str(i)],
                                                  predict[i].numpy()))
    plt.show()


if __name__ == '__main__':
    main()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值