Bert系列模型参数优化降低大小

我们下载下来的预训练的bert-base模型的大小大概是394M左右,但我们在自己数据集上经过fine-tuning后的bert-bae模型大小大约是1.2G, 整整是Bert-base模型的3倍,让我们来看看到底是什么原因造成的,首先我们可以通过下一段代码来输出我们训练好的模型和官方提供的Bert-base模型的参数变量。

1:官方提供的Bert-base模型参数信息如下:
from tensorflow.python import pywrap_tensorflow
from tensorflow.contrib.slim import get_variables_to_restore
# display the bert hyperparameter
def display_bert_base_hyperparameter():
    bert_model_path="/chinese_L-12_H-768_A-12/"
    model_reader = pywrap_tensorflow.NewCheckpointReader(bert_model_path + "bert_model.ckpt")
    var_dict = model_reader.get_variable_to_shape_map()
    print(len(var_dict))
    for key,value in var_dict.items():
        print(str(key) + ":" + str(value))
    print("=*="*10)

Bert-base部分参数如下所示在这里插入图片描述

2:我们自己fine-tuning后的Bert-base模型参数信息如下:

在这里插入图片描述
通过对比分析发现混入了不少带有"adam"的变量,我们来看adam优化算法,在计算一阶矩和二阶矩时,我们是要保存之前时刻的滑动平均值的,而每个需要通过梯度更新的参数,都要维护这样一个一阶矩和二阶矩之前时刻的滑动平均值,也就是对应上面的 “adam_m” (一阶矩) 和 “adam_v” (二阶矩),因此导致我们自己预训练的模型的大小大约是官方预训练模型的大小的3倍。而这些参数变量只有训练模型的时候有用,在之后预测的时候以及fine-tuning阶段都是没有用的(fine-tuning时我们只是用到了之前预训练好的模型的参数来作为初始化值,并不会用到优化算法中的中间值),因此我们可以在训练完或者fine-tuning完bert模型之后,在保存模型时将这些参数去掉,也可以在保存了完整的参数之后,再加载去掉这些参数,然后重新保存,这样就不需要改动bert的源码,具体的实现如下:

def slim_bert_model_size():
    bert_fintune_model_path = "/fine-tuning-model/"
    graph = tf.Graph()
    with graph.as_default():
        sess = tf.Session()
        checkpoint_file = tf.train.latest_checkpoint(bert_fintune_model_path)
        saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
        saver.restore(sess, checkpoint_file)

        variables = get_variables_to_restore()
        other_vars = [variable for variable in variables if not re.search("adam", variable.name)]
        var_saver = tf.train.Saver(other_vars)
        var_saver.save(sess, bert_fintune_model_path + "model.ckpt-slim")

之后就可以直接加载这个去掉带"adam"的变量的模型用来做预测。这样虽然不能提升模型的预测速度,但是可以减小模型的内存。

### 调整BERT模型参数以提升性能 #### 使用超参数调优工具进行自动化搜索 为了找到最优的超参数组合,在PyTorch环境中可利用Hyperopt或Optuna这样的库自动执行超参数调优工作[^5]。这些工具能够高效探索不同的配置选项,从而帮助发现能使模型表现最佳的一组设置。 ```python import optuna def objective(trial): learning_rate = trial.suggest_loguniform('learning_rate', 1e-5, 1e-4) batch_size = trial.suggest_categorical('batch_size', [16, 32]) model = BertForSequenceClassification.from_pretrained( 'bert-base-uncased', num_labels=2, output_attentions=False, output_hidden_states=False ) optimizer = AdamW(model.parameters(), lr=learning_rate, correct_bias=False) scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=len(train_dataloader)*epochs) # 训练循环... return best_accuracy_score study = optuna.create_study(direction='maximize') study.optimize(objective, n_trials=100) ``` 此代码片段定义了一个目标函数`objective()`用于指导Optuna寻找最合适的超参数值。该函数内部设置了两个主要变量——学习率(`learning_rate`)和批量大小(`batch_size`)作为待优化的目标,并通过一系列试验迭代逐步逼近全局最优解。 #### 数据预处理的重要性 除了合理设定超参数外,正确实施数据预处理同样至关重要。这包括但不限于清理输入文本、分词转换成适合BERT接受的形式等操作[^3]。良好的预处理流程有助于减少噪声干扰并增强特征表达能力,进而促进下游任务上的泛化效果。 #### 防止过拟合现象发生 当观察到训练误差持续降低而验证集上却不再进步甚至恶化时,则表明出现了过拟合情况。此时应考虑增加正则项强度、早停策略或是简化网络结构等方式加以应对。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奇文王语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值