目录
6.1 为何需要大样本理论
(1)小样本理论的假设过强。
首先,小样本理论的严格外生性假设要求解释变量与所有的扰动项均正交(不相关)。大样本理论则只要求解释变量与同期(同方程)的扰动项不相关。
其次,小样本理论假定扰动项为正态分布,而大样本理论无此限制。在很多情况下,我们并无法把握经济变量是否服从正态分布。
(2)在小样本理论的框架下,我们必须研究统计量的精确分布,但常常难以推导。而根据大样本理论,只要研究统计量的大样本分布,相对比较容易推导(可使用大数定律与中心极限定理)。
(3)使用大样本理论的代价是要求样本容量较大,以便大数定律与中心极限定理可以起作用。
样本容量一般至少 n ≥ 30 n\geq30 n≥30,最好在100以上。
6.2 随机收敛
1.确定性序列的收敛
2.随机序列的收敛
3.依均方收敛
依均方收敛意味着依概率收敛;反之,依概率收敛并不意味着依均方收敛
4.依分布收敛
- 举个例子
t t t分布的自由度越来越大是, t t t分布依分布收敛于标准正态分布,即当 k → ∞ k\rightarrow\infty k→∞时, t ( k ) ⟶ a N ( 0 , 1 ) t(k)\stackrel{a}{\longrightarrow}N(0,1) t(k)⟶aN(0,1)
分布函数
twoway function N=normal(x),range(-5 5)||function t1=t(1,x),range(-5 5) lp(dash)||function t5=t(5,x),range(-5 5) lp(shortdash) ytitle(累积分布函数)
概率密度
twoway function N=normalden(x),range(-5 5)||function t1=tden(1,x),range(-5 5) lp(dash)||function t5=tden(5,x),range(-5 5) lp(shortdash) ytitle(概率密度)
- 依分布收敛的运算
summary:依均方收敛→依概率收敛→依分布收敛 |
---|
6.3 大数定律与中心极限定理
1.大数定律【样本均值依概率收敛于总体期望】