【计量经济学及Stata应用】第6章 大样本OLS

文章讨论了为何需要大样本理论,指出小样本理论的局限性,如严格的假设和难以推导的精确分布。大样本理论放宽了这些要求,利用大数定律和中心极限定理简化分析。文中还介绍了随机过程的性质,大样本OLS估计的假定和性质,以及如何使用Stata进行OLS估计并考虑稳健标准误。此外,通过蒙特卡罗模拟验证了中心极限定理,并探讨了大样本统计推断的方法,包括系数检验和线性假设检验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6.1 为何需要大样本理论

(1)小样本理论的假设过强。
首先,小样本理论的严格外生性假设要求解释变量与所有的扰动项均正交(不相关)。大样本理论则只要求解释变量与同期(同方程)的扰动项不相关。
其次,小样本理论假定扰动项为正态分布,而大样本理论无此限制。在很多情况下,我们并无法把握经济变量是否服从正态分布。
(2)在小样本理论的框架下,我们必须研究统计量的精确分布,但常常难以推导。而根据大样本理论,只要研究统计量的大样本分布,相对比较容易推导(可使用大数定律与中心极限定理)。
(3)使用大样本理论的代价是要求样本容量较大,以便大数定律与中心极限定理可以起作用。
样本容量一般至少 n ≥ 30 n\geq30 n30,最好在100以上。

6.2 随机收敛

在这里插入图片描述

1.确定性序列的收敛
在这里插入图片描述

2.随机序列的收敛

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3.依均方收敛
在这里插入图片描述
依均方收敛意味着依概率收敛;反之,依概率收敛并不意味着依均方收敛

4.依分布收敛
在这里插入图片描述
在这里插入图片描述

  • 举个例子
    t t t分布的自由度越来越大是, t t t分布依分布收敛于标准正态分布,即当 k → ∞ k\rightarrow\infty k时, t ( k ) ⟶ a N ( 0 , 1 ) t(k)\stackrel{a}{\longrightarrow}N(0,1) t(k)aN(0,1)
分布函数
twoway function N=normal(x),range(-5 5)||function t1=t(1,x),range(-5 5) lp(dash)||function t5=t(5,x),range(-5 5) lp(shortdash) ytitle(累积分布函数)

在这里插入图片描述

概率密度
twoway function N=normalden(x),range(-5 5)||function t1=tden(1,x),range(-5 5) lp(dash)||function t5=tden(5,x),range(-5 5) lp(shortdash) ytitle(概率密度)

在这里插入图片描述

  • 依分布收敛的运算
    在这里插入图片描述
    在这里插入图片描述
summary:依均方收敛→依概率收敛→依分布收敛

6.3 大数定律与中心极限定理

1.大数定律【样本均值依概率收敛于总体期望】

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值