复变函数论5-1-解析函数的洛朗展式2-洛朗展式1:洛朗定理【在圆环H:r<│z-a│<R内解析的函数f(z)必可展成双边幂级数,f(z)=∑cₙ(z-a)ⁿ称为洛朗展式】

洛朗定理指出,在圆环H:r<|z-a|<R内解析的函数f(z)可以表示为双边幂级数f(z)=∑cn(z-a)^n,其中cn通过闭合曲线Γ上的积分计算得出。这个级数是唯一确定的,且与选取的z无关,展示了复变函数的泰勒级数推广。
摘要由CSDN通过智能技术生成

前面指出了双边幂级数在其收敛圆环内表示一解析函数, 反过来有

定理 5.2 (洛朗定理)

在圆环 H : r < ∣ z − a ∣ < R ( r ⩾ 0 , R ⩽ + ∞ ) H: r<|z-a|<R(r \geqslant 0, R \leqslant+\infty) H:r<za<R(r0,R+) 内解析的函数 f ( z ) f(z) f(z)必可展成双边幂级数

f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) n , ( 5.4 ) \color{red}{f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n}}, \quad\quad(5.4) f(z)=n=cn(za)n,(5.4)

其中

c n = 1 2 π i ∫ Γ f ( ζ ) ( ζ − a ) n + 1   d ζ ( n = 0 , ± 1 , ± 2 , ⋯   ) , ( 5.5 ) c_{n}=\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \cfrac{f(\zeta)}{(\zeta-a)^{n+1}} \mathrm{~d} \zeta \quad(n=0, \pm 1, \pm 2, \cdots), \quad\quad(5.5) cn=2πi1Γ(ζa)n+1f(ζ) dζ(n=0,±1,±2,),(5.5)

Γ \Gamma Γ 为圆周 ∣ ζ − a ∣ = ρ ( r < ρ < R ) |\zeta-a|=\rho(r<\rho<R) ζa=ρ(r<ρ<R), 并且展式是惟一的 (即 f ( z ) f(z) f(z)及圆环 H H H 惟一地决定了系数 c n c_{n} cn ).


定理 5.2 对应于定理 4.15 (泰勒定理).


z z z H H H 内任意取定的点, 总可以找到含于 H H H 内的两个圆周
Γ 1 : ∣ ζ − a ∣ = ρ 1 , Γ 2 : ∣ ζ − a ∣ = ρ 2 , \begin{array}{l} \Gamma_{1}:|\zeta-a|=\rho_{1}, \\ \Gamma_{2}:|\zeta-a|=\rho_{2}, \end{array} Γ1:ζa=ρ1,Γ2:ζa=ρ2,

使得 z z z 含在圆环 ρ 1 < ∣ z − a ∣ < ρ 2 \rho_{1}<|z-a|<\rho_{2} ρ1<za<ρ2 内 (图5.1).

在这里插入图片描述

因为函数 f ( z ) f(z) f(z) 在闭圆环 ρ 1 ⩽ ∣ z − a ∣ ⩽ ρ 2 \rho_{1} \leqslant|z-a| \leqslant \rho_{2} ρ1zaρ2上解析,由柯西积分公式有

f ( z ) = 1 2 π i ∫ Γ 2 f ( ζ ) ζ − z   d ζ − 1 2 π i ∫ Γ 1 f ( ζ ) ζ − z   d ζ , f(z)=\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{2}} \cfrac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta-\cfrac{1}{2 \pi \mathrm{i}} \int_{\Gamma_{1}} \cfrac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta, f(z)=2πi1Γ2ζz

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值