背景
看逻辑回归时,里面提到的微分和导数傻傻分不清,里面的概念描述的微分,写的公式却是导数的表达式。
干脆来复习一下高等数学里面这部分的知识。
问题分析
先分析一个具体的问题:一块正方形金属薄片受到温度变化的影响,其边长从 x 0 x_0 x0 变到 x 0 + Δ x x_0+\Delta x x0+Δx,问此薄片的面积改变了多少?
热胀冷缩,边长增加了,则面积也会增加,正方形的面积公式为 A = x 2 A = x^{2} A=x2。
受热之前的面积:
A
1
=
x
0
2
\begin{align} A1=x_0^{2} \end{align}
A1=x02
受热之后的面积:
A
2
=
(
x
0
+
Δ
)
2
=
x
0
2
+
2
x
0
Δ
x
+
Δ
x
2
\begin{align} A2 &=(x_0+\Delta) ^{2} \newline &= x_0^{2} +2x_0\Delta x+\Delta x ^{2} \end{align}
A2=(x0+Δ)2=x02+2x0Δx+Δx2
公式 (3) 和公式(1)相减,得到受热后面积的增加量
Δ
A
\Delta A
ΔA :
Δ
A
=
A
2
−
A
1
=
2
x
0
Δ
x
+
Δ
x
2
\begin{align} \Delta A &= A2-A1 \newline &=2x_0\Delta x + \Delta x ^{2} \end{align}
ΔA=A2−A1=2x0Δx+Δx2
公式(5)的增量分为两部分,第一部分与原来的边长和边长增量有关,即 2 x 0 Δ x 2x_0\Delta x 2x0Δx;第二部分只与增量有关,且是增量的平方,即 Δ x 2 \Delta x ^{2} Δx2,这是一个高阶无穷小量。当边长改变很微小时,第二部分可近乎为0,那么增量就可近似用第一部分来替代。
为什么不忽略第一部分呢?我的理解是:这部分 Δ x \Delta x Δx 虽然很小,但是 x 0 x0 x0 可能很大,所以面积的变化量应该不会比 Δ x \Delta x Δx 小。
即面积的变化量最终近似转换为: 2 x 0 Δ x 2x_0\Delta x 2x0Δx,此处 2 x 0 2x_0 2x0 作为一个整体,可记作常量 A A A,即 Δ A = A Δ x \Delta A=A\Delta x ΔA=AΔx。
高阶无穷小
若 lim α → 0 β α = 0 \lim_{ α \to 0} \frac {β}{α}=0 limα→0αβ=0,则称「β是比α较高阶的无穷小」,即在某一过程( x → 0 x→0 x→0 或 x → ∞ x→∞ x→∞ 这类过程) 中,β→0 比 α→0 更快一些。
微分通用定义
根据前面正方形面积变化量的推导过程,设函数
y
=
f
(
x
)
y=f(x)
y=f(x) 在某区间内有定义:
x
0
x_0
x0 及
x
0
+
Δ
x
x_0+ \Delta x
x0+Δx 在这区间内,如果函数的增量:
Δ
y
=
f
(
x
0
+
Δ
x
)
−
f
(
x
0
)
\begin{align} \Delta y = f(x_0+\Delta x) - f(x_0) \end{align}
Δy=f(x0+Δx)−f(x0)
可表示为:
Δ
y
=
A
Δ
x
+
o
(
Δ
x
)
\begin{align} \Delta y = A\Delta x + o(\Delta x) \end{align}
Δy=AΔx+o(Δx)
其中 A 是常量,那么称函数
y
=
f
(
x
)
y=f(x)
y=f(x) 在点
x
0
x_0
x0 处是可微的,而
A
Δ
x
0
A \Delta x_0
AΔx0 叫做函数
y
=
f
(
x
)
y=f(x)
y=f(x) 在点
x
0
x_0
x0 相对于自变量的增量
Δ
x
\Delta x
Δx 的微分,记做
d
y
dy
dy ,即:
d
y
=
A
Δ
x
\begin{align} dy = A\Delta x \end{align}
dy=AΔx
函数可微的条件以及与导数的转换
按函数可微的条件,即存在公式 (7)的等式关系,对等式 (7)两边同时除以自变量的增量
Δ
x
\Delta x
Δx ,可得到如下等式:
Δ
y
Δ
x
=
A
Δ
x
Δ
x
+
o
(
Δ
x
)
Δ
x
=
A
+
o
(
Δ
x
)
Δ
x
\begin{align} \frac{\Delta y}{\Delta x}=\frac{A\Delta x}{\Delta x}+\frac{o(\Delta x)}{\Delta x}=A+\frac{o(\Delta x)}{\Delta x} \end{align}
ΔxΔy=ΔxAΔx+Δxo(Δx)=A+Δxo(Δx)
对公式(9)等价变换,计算常量 A 得到:
A
=
Δ
y
Δ
x
−
o
(
Δ
x
)
Δ
x
\begin{align} A=\frac{\Delta y}{\Delta x}-\frac{o(\Delta x)}{\Delta x} \end{align}
A=ΔxΔy−Δxo(Δx)
当自变量的增量趋于0 即
lim
Δ
x
→
0
\lim_{\Delta x \to 0}
limΔx→0 公式(10)第二部分是高阶无穷小数,也趋于0,就得到 A 的极限值:
A
=
lim
x
→
0
Δ
y
Δ
x
−
0
=
lim
x
→
0
Δ
y
Δ
x
=
f
′
(
x
0
)
\begin{align} A=\lim_{x \to 0} \frac{\Delta y}{\Delta x}-0=\lim_{x \to 0} \frac{\Delta y}{\Delta x}=f^{'}(x_0) \end{align}
A=x→0limΔxΔy−0=x→0limΔxΔy=f′(x0)
这就是将微分定义中的常量
A
A
A 转换为了函数
y
y
y 在
x
0
x0
x0 处的导数定义了,即如果函数
f
(
x
)
f(x)
f(x) 在点
x
0
x_0
x0 处可微,则
f
(
x
)
f(x)
f(x) 在点
x
0
x_0
x0 处一定可导「即
f
′
(
x
0
)
f^{'}(x_0)
f′(x0) 存在」,且
A
=
f
′
(
x
0
)
A=f^{'}(x_0)
A=f′(x0)。
将
A
A
A 的值代入公式(8)得到微分值为:
d
y
=
f
′
(
x
0
)
Δ
x
\begin{align} dy=f^{'}(x_0)\Delta x \end{align}
dy=f′(x0)Δx
微分和真实微变量的比
函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可微的充分必要条件是:函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可导。当 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可微时,微分一定是: d y = f ′ ( x 0 ) Δ x dy=f^{'}(x_0)\Delta x dy=f′(x0)Δx。
个人思考:可微一定可导,那可导一定可微吗?百度出来的说不一定可微呢?
当导数值
f
′
(
x
)
≠
0
f^{'}(x)\neq 0
f′(x)=0时,我们对真实变化量
Δ
y
\Delta y
Δy 和微分
d
y
dy
dy 的比求极限:
lim
Δ
x
→
0
Δ
y
d
y
=
lim
Δ
x
→
0
Δ
y
f
′
(
x
0
)
Δ
x
=
1
f
′
(
x
)
lim
Δ
x
→
0
Δ
y
Δ
x
=
1
f
′
(
x
)
f
′
(
x
)
=
1
\begin{align} \lim_{\Delta x \to 0}\frac{\Delta y}{dy}&=\lim_{\Delta x \to 0}\frac{\Delta y}{f^{'}(x_0)\Delta x}\newline &=\frac{1}{f^{'}(x)}\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}\newline &=\frac{1}{f^{'}(x)}f^{'}(x)\newline &=1 \end{align}
Δx→0limdyΔy=Δx→0limf′(x0)ΔxΔy=f′(x)1Δx→0limΔxΔy=f′(x)1f′(x)=1
公式(13)到(14)是提取常量系数到前面,(14)到(15)是导数的定义,所以最终得到了真实变量和微分的比值,在微变量 Δ x → 0 \Delta x\to 0 Δx→0 时的极限值是1。
结论:如果函数
f
(
x
)
f(x)
f(x) 在点
x
0
x_0
x0 处的导数
f
′
(
x
0
)
≠
0
f^{'}(x_0)\neq 0
f′(x0)=0 ,且$|\Delta x| $很小时,因变量的增量用近似值表示为:
Δ
y
≈
d
y
\begin{align} \Delta y \approx dy \end{align}
Δy≈dy
个人思考:这就是第一部分「增量就可近似用第一部分来替代」,即增量可以近似用微分替代。
微分在近似计算中的应用
在工程问题中,经常会遇到一些复杂的计算公式,如果直接计算会很费力的,利用微分往往可以把一些复杂的计算公式用简单的近似公式来替代。
未完,待续……
启示录
微分,顾名思义,微小的变化,它是自变量变化微小的量后,因变量与这个自变量变化量之间的关系。它就是用来求解因变量的微小变化量的,不知道为什么叫微分呢?并没有体现“分”的意思,我觉得应该叫微变更恰当一点。
导数,它是自变量的变化量和应变量的变化量的比值,在因变量变化量趋于0时的极限值。微分可以用导数来表示。