高等数学之函数的微分:定义、几何意义、实际应用

背景

看逻辑回归时,里面提到的微分和导数傻傻分不清,里面的概念描述的微分,写的公式却是导数的表达式。

干脆来复习一下高等数学里面这部分的知识。

问题分析

先分析一个具体的问题:一块正方形金属薄片受到温度变化的影响,其边长从 x 0 x_0 x0 变到 x 0 + Δ x x_0+\Delta x x0+Δx,问此薄片的面积改变了多少?

热胀冷缩,边长增加了,则面积也会增加,正方形的面积公式为 A = x 2 A = x^{2} A=x2

受热之前的面积:
A 1 = x 0 2 \begin{align} A1=x_0^{2} \end{align} A1=x02

受热之后的面积:
A 2 = ( x 0 + Δ ) 2 = x 0 2 + 2 x 0 Δ x + Δ x 2 \begin{align} A2 &=(x_0+\Delta) ^{2} \newline &= x_0^{2} +2x_0\Delta x+\Delta x ^{2} \end{align} A2=x0+Δ)2=x02+2x0Δx+Δx2

公式 (3) 和公式(1)相减,得到受热后面积的增加量 Δ A \Delta A ΔA
Δ A = A 2 − A 1 = 2 x 0 Δ x + Δ x 2 \begin{align} \Delta A &= A2-A1 \newline &=2x_0\Delta x + \Delta x ^{2} \end{align} ΔA=A2A1=2x0Δx+Δx2

公式(5)的增量分为两部分,第一部分与原来的边长和边长增量有关,即 2 x 0 Δ x 2x_0\Delta x 2x0Δx;第二部分只与增量有关,且是增量的平方,即 Δ x 2 \Delta x ^{2} Δx2,这是一个高阶无穷小量。当边长改变很微小时,第二部分可近乎为0,那么增量就可近似用第一部分来替代

为什么不忽略第一部分呢?我的理解是:这部分 Δ x \Delta x Δx 虽然很小,但是 x 0 x0 x0 可能很大,所以面积的变化量应该不会比 Δ x \Delta x Δx 小。

即面积的变化量最终近似转换为: 2 x 0 Δ x 2x_0\Delta x 2x0Δx,此处 2 x 0 2x_0 2x0 作为一个整体,可记作常量 A A A,即 Δ A = A Δ x \Delta A=A\Delta x ΔA=AΔx

高阶无穷小

lim ⁡ α → 0 β α = 0 \lim_{ α \to 0} \frac {β}{α}=0 limα0αβ=0,则称「β是比α较高阶的无穷小」,即在某一过程( x → 0 x→0 x0 x → ∞ x→∞ x 这类过程) 中,β→0 比 α→0 更快一些。

微分通用定义

根据前面正方形面积变化量的推导过程,设函数 y = f ( x ) y=f(x) y=f(x) 在某区间内有定义: x 0 x_0 x0 x 0 + Δ x x_0+ \Delta x x0+Δx 在这区间内,如果函数的增量:
Δ y = f ( x 0 + Δ x ) − f ( x 0 ) \begin{align} \Delta y = f(x_0+\Delta x) - f(x_0) \end{align} Δy=f(x0+Δx)f(x0)

可表示为:
Δ y = A Δ x + o ( Δ x ) \begin{align} \Delta y = A\Delta x + o(\Delta x) \end{align} Δy=AΔx+o(Δx)

其中 A 是常量,那么称函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 处是可微的,而 A Δ x 0 A \Delta x_0 AΔx0 叫做函数 y = f ( x ) y=f(x) y=f(x) 在点 x 0 x_0 x0 相对于自变量的增量 Δ x \Delta x Δx 的微分,记做 d y dy dy ,即:
d y = A Δ x \begin{align} dy = A\Delta x \end{align} dy=AΔx

函数可微的条件以及与导数的转换

按函数可微的条件,即存在公式 (7)的等式关系,对等式 (7)两边同时除以自变量的增量 Δ x \Delta x Δx ,可得到如下等式:
Δ y Δ x = A Δ x Δ x + o ( Δ x ) Δ x = A + o ( Δ x ) Δ x \begin{align} \frac{\Delta y}{\Delta x}=\frac{A\Delta x}{\Delta x}+\frac{o(\Delta x)}{\Delta x}=A+\frac{o(\Delta x)}{\Delta x} \end{align} ΔxΔy=ΔxAΔx+Δxo(Δx)=A+Δxo(Δx)

对公式(9)等价变换,计算常量 A 得到:
A = Δ y Δ x − o ( Δ x ) Δ x \begin{align} A=\frac{\Delta y}{\Delta x}-\frac{o(\Delta x)}{\Delta x} \end{align} A=ΔxΔyΔxo(Δx)

当自变量的增量趋于0 即 lim ⁡ Δ x → 0 \lim_{\Delta x \to 0} limΔx0 公式(10)第二部分是高阶无穷小数,也趋于0,就得到 A 的极限值:
A = lim ⁡ x → 0 Δ y Δ x − 0 = lim ⁡ x → 0 Δ y Δ x = f ′ ( x 0 ) \begin{align} A=\lim_{x \to 0} \frac{\Delta y}{\Delta x}-0=\lim_{x \to 0} \frac{\Delta y}{\Delta x}=f^{'}(x_0) \end{align} A=x0limΔxΔy0=x0limΔxΔy=f(x0)
这就是将微分定义中的常量 A A A 转换为了函数 y y y x 0 x0 x0 处的导数定义了,即如果函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处可微,则 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处一定可导「即 f ′ ( x 0 ) f^{'}(x_0) f(x0) 存在」,且 A = f ′ ( x 0 ) A=f^{'}(x_0) A=f(x0)

A A A 的值代入公式(8)得到微分值为:
d y = f ′ ( x 0 ) Δ x \begin{align} dy=f^{'}(x_0)\Delta x \end{align} dy=f(x0)Δx

微分和真实微变量的比

函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可微的充分必要条件是:函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可导。当 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可微时,微分一定是: d y = f ′ ( x 0 ) Δ x dy=f^{'}(x_0)\Delta x dy=f(x0)Δx

个人思考:可微一定可导,那可导一定可微吗?百度出来的说不一定可微呢?

当导数值 f ′ ( x ) ≠ 0 f^{'}(x)\neq 0 f(x)=0时,我们对真实变化量 Δ y \Delta y Δy 和微分 d y dy dy 的比求极限:
lim ⁡ Δ x → 0 Δ y d y = lim ⁡ Δ x → 0 Δ y f ′ ( x 0 ) Δ x = 1 f ′ ( x ) lim ⁡ Δ x → 0 Δ y Δ x = 1 f ′ ( x ) f ′ ( x ) = 1 \begin{align} \lim_{\Delta x \to 0}\frac{\Delta y}{dy}&=\lim_{\Delta x \to 0}\frac{\Delta y}{f^{'}(x_0)\Delta x}\newline &=\frac{1}{f^{'}(x)}\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}\newline &=\frac{1}{f^{'}(x)}f^{'}(x)\newline &=1 \end{align} Δx0limdyΔy=Δx0limf(x0)ΔxΔy=f(x)1Δx0limΔxΔy=f(x)1f(x)=1

公式(13)到(14)是提取常量系数到前面,(14)到(15)是导数的定义,所以最终得到了真实变量和微分的比值,在微变量 Δ x → 0 \Delta x\to 0 Δx0 时的极限值是1。

结论:如果函数 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 处的导数 f ′ ( x 0 ) ≠ 0 f^{'}(x_0)\neq 0 f(x0)=0 ,且$|\Delta x| $很小时,因变量的增量用近似值表示为:
Δ y ≈ d y \begin{align} \Delta y \approx dy \end{align} Δydy

个人思考:这就是第一部分「增量就可近似用第一部分来替代」,即增量可以近似用微分替代。

微分在近似计算中的应用

在工程问题中,经常会遇到一些复杂的计算公式,如果直接计算会很费力的,利用微分往往可以把一些复杂的计算公式用简单的近似公式来替代。

未完,待续……

启示录

微分,顾名思义,微小的变化,它是自变量变化微小的量后,因变量与这个自变量变化量之间的关系。它就是用来求解因变量的微小变化量的,不知道为什么叫微分呢?并没有体现“分”的意思,我觉得应该叫微变更恰当一点。

导数,它是自变量的变化量和应变量的变化量的比值,在因变量变化量趋于0时的极限值。微分可以用导数来表示。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值