Hinge loss 与二分类SVM

原文地址:http://breezedeus.github.io/2015/07/12/breezedeus-svm-is-hingeloss-with-l2regularization.html

SVM等于Hinge损失 + L2正则化


这里说的SVM是指最原始的2分类SVM,不考虑SVM的其他各种扩展。为简单起见,我们也只考虑线性SVM,对于带核函数的SVM,利用相似的推导我们可以获得相同的结论:

2分类SVM等于Hinge损失 + L2正则化。

下面是线性SVM的一般形式,其中目标分类y∈{−1,1}C为给定的惩罚系数:

minω,γ,ξ[12‖ω‖22+C∑i=1nξi]s.t. (ωTxi+γ)yi≥1−ξi, ∀i=1,…,nξi≥0, ∀i=1,…,n

m≜fθ(x)y(其中y∈{−1,1}),那么对于2分类问题,最理想的损失函数是0/1损失函数。也就当fθ(x)y有相同符号时,损失为0;而当fθ(x)y有不同符号时,损失为1。但0/1损失函数既不是处处可微,又不是凸函数,所以直接最小化0/1损失函数很困难。Hinge损失是0/1损失的一种近似(见下图):

Jhinge(m)=max{0,1−m}  。

0/1损失与Hinge损失函数

Hinge损失的名字是源自它跟打开135度的折叶(hinge)长得很像。

0/1损失与Hinge损失函数

带有L2正则项的Hinge损失优化问题如下:

minω,γ[C∑i=1nmax{0,1−(ωTxi+γ)yi}+12‖ω‖22]  。

为了与前面的SVM表达式对应,我们把L2正则项中的惩罚系数挪到前面的Hinge损失上了。Hinge损失函数有如下的等价定义:

max{0,1−m}=minξs.t. ξ≥1−mξ≥0

利用上面的等价定义,我们可以重写带有L2正则项的Hinge损失优化问题为:

minω,γ,ξ[C∑i=1nξi+12‖ω‖22]s.t. ξi≥1−(ωTxi+γ)yi, ∀i=1,…,nξi≥0, ∀i=1,…,n

嗯,上式就是本文最开始给出的SVM优化问题了。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值