信贷违约风险评估模型(中篇):特征工程

本文探讨了在信贷违约风险评估中特征工程的重要性,包括创建多项式特征和利用领域知识生成新特征,如CREDIT_INCOME_PERCENT等。通过可视化新特征,研究其与原始特征的相关性,为构建更有效的机器学习模型提供依据。
摘要由CSDN通过智能技术生成

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

特征工程

特征工程,是根据数据集已有的特征,删除、加工产生新特征,从而改善模型的预测效果。著名的计算机科学家、人工智能与机器学习领域的领军人物吴恩达(Andrew Ng)有一句名言:“applied machine learning is basically feature engineering.” 具体上说,特征工程包括:

  • 特征构造:从数据集产生新特征。

  • 特征选择:仅选择最重要的特征或降维方法。

下面开始我们的特征工程!

Polynomial Features

在这个方法里,我们产生存在的特征的幂次或交互项作为新特征。例如,
E X T _ S O U R C E 1 2 EXT\_SOURCE_1^2 EXT_SOURCE12

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值