机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)
特征工程
特征工程,是根据数据集已有的特征,删除、加工产生新特征,从而改善模型的预测效果。著名的计算机科学家、人工智能与机器学习领域的领军人物吴恩达(Andrew Ng
)有一句名言:“applied machine learning is basically feature engineering.” 具体上说,特征工程包括:
-
特征构造:从数据集产生新特征。
-
特征选择:仅选择最重要的特征或降维方法。
下面开始我们的特征工程!
Polynomial Features
在这个方法里,我们产生存在的特征的幂次或交互项作为新特征。例如,
E X T _ S O U R C E 1 2 EXT\_SOURCE_1^2 EXT_SOURCE12