Nature Microbiol | 南农张瑞福组揭示植物益生菌根际定殖中互作模式

根际益生菌是微生物肥料的主要菌种来源,高效的根际定殖是其发挥各种植物益生功能的前提。根际益生菌的定殖包括根际趋化、根系粘附和根表生物被膜形成三个主要的过程,每一步都是由信号介导的菌-植互作驱动的。有效铁是根际环境中的稀缺资源,菌、植双方都在极力获取,根际益生菌在根表形成生物被膜需要铁元素,主要通过分泌铁载体从根际土壤中争夺。根际益生菌一旦在根表定殖形成生物被膜,则可通过其铁载体和生物被膜基质系统持续为宿主植物提供从土壤中获取的铁元素,改善植物铁营养。所以,快速启动益生菌在植物根表的定殖成膜对植物非常有利,根际益生菌与植物长期互利进化过程中,是否具有促进根际益生菌快速定殖的机制?

近日,南京农业大学沈其荣院士领衔的“土壤微生物与有机肥”团队张瑞福教授课题组Nature Microbiology在线发表了题为Plant commensal type VII secretion system causes iron leakage from roots to promote colonization的研究论文,揭示了植物益生菌根际定殖过程中全新的菌-植互作模式。

d8fdcd22338ce16a41f2d7030e9b6d2d.png

该研究以生产上广泛应用的微生物肥料菌种贝莱斯芽孢杆菌SQR9为研究材料,发现其VII型分泌系统分泌的YukE蛋白能在菌-植互作早期插入根细胞膜,导致短暂性的根细胞中的铁泄漏,因为植物根细胞中的铁浓度高于土壤环境,可为芽孢杆菌启动根表快速定殖提供所需的铁元素,试验证明这种互作更高效地发挥了根际益生菌的促生作用。这种“先借后还、借少还多”的“启动费”模式,代表了一种全新的根际益生菌-植物之间的互作模式,为根际益生菌为代表的微生物肥料高效发挥作用提供了理论指导。

ccade6f1f9c825e9a6ca0bbe9cc9961a.png

中国农科院农业资源与农业区划研究所刘云鹏副研究员(课题组博士毕业生)、硕士毕业生舒霞(中国农科院在读博士生)和中国林科院华北林业实验中心陈淋副研究员(课题组博士毕业生)为论文共同第一作者,张瑞福教授、刘云鹏副研究员为论文共同通讯作者,该研究同时得到国家自然科学基金、国家重点研发专项、中国农科院青年创新专项资助。

原文链接:

https://www.nature.com/articles/s41564-023-01402-1

猜你喜欢

iMeta简介 高引文章 高颜值绘图imageGP 网络分析iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测

10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature

系列教程:微生物组入门 Biostar 微生物组  宏基因组

专业技能:学术图表 高分文章 生信宝典 不可或缺的人

一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索  Endnote

扩增子分析:图表解读 分析流程 统计绘图

16S功能预测   PICRUSt  FAPROTAX  Bugbase Tax4Fun

生物科普:  肠道细菌 人体上的生命 生命大跃进  细胞暗战 人体奥秘  

写在后面

为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。

点击阅读原文,跳转最新文章目录阅读

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实应用中据具体需求调整模型架构和参数,并结合真实数据进行验证。
内容概要:本文是北京金融科技产业联盟发布的《基于数据空间的金融数据可信流通研究报告》,探讨了金融数据可信流通的现状、挑战和发展前景。文章首先介绍了金融数据在数字化转型中的重要性及其面临的隐私保护和安全挑战。接着,文章详细阐述了数据空间的概念及其发展历程,尤其是可信数据空间(TDM)在我国的发展情况。文中还深入分析了金融数据可信流通的典型应用场景、关键技术和方案架构,如数据访问控制、数据使用控制、智能合约、数据脱敏等。最后,文章展示了多个典型场景应用案例,如中信银行总分行数据流通管控、工银金租数据流通、银联安全生物特征支付等,并总结了当前可信数据空间建设中存在的法规、技术、标准和商业模式挑战,提出了相应的政策建议。 适用人群:金融行业从业者、数据安全管理人员、政策制者、科技研发人员等。 使用场景及目标:①理解金融数据可信流通的重要性和挑战;②学习可信数据空间的关键技术和应用场景;③探索金融数据可信流通的具体实践案例;④了解当前可信数据空间建设的瓶颈和未来发展方向。 其他说明:本文不仅提供了详尽的技术和应用分析,还提出了具体的政策建议,有助于推动金融数据可信流通的健康发展。阅读本文可以帮助读者深入了解金融数据安全保护和高效利用的最佳实践,为相关政策和技术的发展提供参考。
基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞,主要针对计算机相关专业的正在做大业的学生和需要项目实战练习的学习者,可为毕业设计、课程设计、期末大业,代码资料完整,下载可用。 基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大业)基于Python的天气预测和天气可视化项目源码+文档说明(高分毕设/大
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值