视频回放 | 朱穗-医学统计数据常见分析方法及其误用

医学统计数据常见分析方法及其误用

2e3ef109a6195f524d0d728fd1290d3d.png

8646221188ab9e24f791565fc75be4b3.png

972cefc41ac871bb6f2f34b51f742e51.png

ce5e9894f06b077e1fa70f6df70aa635.png

1fc73bdc4eac5de4a5e88802e3deaaee.png

ba922ce5c834da5742453d6660392267.png

eb1040b7e486b83f1b8d7dcd0ffc85ca.png

1462b9e367f58744dfe7cf652bd675f9.png

0e0fdcc2f6661e8a4cd072a4e67ad5f1.png

f4d141be7504cc186efc207ca611c052.png

391a684e2a86ad0c31f5ba4a070e31e1.png

d0cc9dd8d781246005a7438ef554174b.png

4525e50169900c1257c67aa6e26dc4cb.png

f417c30a26768d0f1353e83932c7e2a7.png

2e5f5d9165c705bdb39b6f9d1b52f550.png

1b76d3991ffbee78ab26c24eab5a70d3.png

0fc101a517d7403fcba733a515237bf3.png

9ea1473e7f07f283db42822e52431454.png

d9ac6bb73601b079a6bcef93c0b16192.png

75ee9c7b8a85c4a42b973a2f9a7facc5.png

91052ea7adf59d4482df599d6a9c9d64.png

9635cb96170c5dc9d9f0fe86020dabc6.png

606491945b4a629356f7286a0a10c9aa.png

b923386dac92df977ea7e7331cf6355e.png

0afcf3ee39a9228eae6797a03b418c19.png

76262f2361fa705c8ac0aaa8ddfa29c2.png

fe6c13a2ef9706e85cdba4414bfeaf73.png

ab9dda124de0d54004aa97e1f80d6f10.png

acae7fac1beced111d119fb5430eac8d.png

c2f8edccf3cb63f4888cd5d0b53fce0b.png

0968a0b82cbaa0155bfe6cdfc256475f.png

d1904d9903a55586218f0358006d30fa.png

f9511f9a358c2ecc86bb4d1e71194e18.png

更多推荐

(▼ 点击跳转)

高引文章 ▸▸▸▸

iMeta | 引用7000+,海普洛斯陈实富发布新版fastp,更快更好地处理FASTQ数据

63fec31ff4b847bf8bdacc6186619952.png

高引文章 ▸▸▸▸

iMeta | 德国国家肿瘤中心顾祖光发表复杂热图(ComplexHeatmap)可视化方法

d9c058932e9ea3a4714cdb04a5e7e5aa.png

高引文章▸▸▸▸

iMeta | 高颜值绘图网站imageGP+视频教程合集                                        

82503d8e40d30ca2c0e53e81b046facd.png

8e10a9d526b383198d67af71744b28af.jpeg

1卷1期

6c8f4bfd5e8378d9c436ef10abf1659d.jpeg

1卷2期

7301126d5774755c09cb0c184bdd303b.jpeg

1卷3期

27b666132c42cb6a6e008178b2f04cf7.jpeg

1卷4期

2b4350933387ee579e71bf1e5752d80a.jpeg

2卷1期

5461eeffca9c714954f1691f3f043ec5.jpeg

2卷2期

99030cd01515d5a2f365f665870f38d2.png

2卷3期

6b2a387ecea2d3a9effd171b813f2f6c.jpeg

2卷4期

18070ed046a5ce1c796fae7da3476f39.png

3卷1期

291e627e295e02c4983ce2a32b30a82d.png

2卷2期封底

96ad0259ea6b5bb7a646f3374f0e92bf.jpeg

2卷4期封底

6ca008f1f5183ed980b34a97ac916aff.png

3卷2期

期刊简介

“iMeta” 是由威立、肠菌分会和本领域数百位华人科学家合作出版的开放获取期刊,主编由中科院微生物所刘双江研究员和荷兰格罗宁根大学傅静远教授担任。目的是发表原创研究、方法和综述以促进宏基因组学、微生物组和生物信息学发展。目标是发表前10%(IF > 20)的高影响力论文。期刊特色包括视频投稿、可重复分析、图片打磨、青年编委、50万用户的社交媒体宣传等。2022年2月正式创刊发行!目前期刊已经被ESCI、Scopus等数据库收录。

联系我们

iMeta主页:http://www.imeta.science

出版社:https://onlinelibrary.wiley.com/journal/2770596x
投稿:https://mc.manuscriptcentral.com/imeta
邮箱:office@imeta.science

内容概要:本文介绍了Dify——一个用于开发大型语言模型(LLM)应用程序的开源平台。Dify融合了后端即服务(BaaS)和LLMOps理念,使开发者能快速构建生产级别的生成式AI应用。它支持多种LLM模型,包括GPT、Mistral、Llama3等,并兼容多种推理提供商。Dify内置了高质量的检索增强生成(RAG)引擎和灵活的Agent框架,支持聊天助手、文本生成、Agent应用和工作流等多种应用类型。通过丰富的功能组件,如数据集管理、可视化Prompt编排、应用运营工具和插件生态系统,Dify极大简化了AI应用的开发过程。文章还展示了Dify在电商智能客服、新媒体内容生成和企业办公自动化等实际场景中的应用案例,并与FastGPT进行了对比,突出了Dify在模型接入、应用构建和用户友好度等方面的优势。 适合人群:对AI应用开发感兴趣的研发人员,尤其是希望快速构建和部署AI应用的开发者和企业。 使用场景及目标:①通过Dify的强大模型支持和RAG引擎,快速构建智能客服、内容生成等AI应用;②利用Agent框架和工作流功能,实现复杂任务的自动化处理;③通过丰富的功能组件和插件生态系统,提升应用的灵活性和功能性。 其他说明:Dify不仅提供了便捷的安装和使用指南,还展望了未来的发展前景,强调其在降低AI应用开发门槛和推动AI技术创新方面的巨大潜力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值