点击蓝字 关注我们
未来一瞥:整合人工智能实现HER2阳性乳腺癌精准管理
综 述
● 原文链接DOI: https://doi.org/10.1002/imo2.19
●2024年8月2日,中山大学肿瘤防治中心刘鹏和邹宇田团队在iMetaOmics在线发表了题为“A glimpse into the future: Integrating artificial intelligence for precision HER2-positive breast cancer management”的文章。
● 本综述结果为评估基于人工智能的抗HER2治疗提供了宝贵的见解,强调了一些关键概念和障碍,这些概念和障碍如果得到解决,可促进人工智能辅助抗HER2治疗的整合。
● 第一作者:邓鑫霈、闫艺萱、詹泽凯、谢锦东
● 通讯作者:邹宇田(zouyt@sysucc.org.cn)、涂剑(122019065@glmc.edu.cn)、刘鹏(liupeng@sysucc.org.cn)
● 合作作者:唐海林
● 主要单位:中山大学肿瘤防治中心、中山大学光华口腔医学院附属口腔医院、中山大学医学院、桂林医科大学药学院
亮 点
● 回顾了人工智能在辅助HER2状态评估和抗HER2治疗预测的应用;
● 总结了目前基于病理学和影像学的诊断和预测模型的研究进展和应用;
● 讨论了人工智能在抗HER2治疗领域的困境以及未来发展方向。
摘 要
乳腺癌是一种高度异质性疾病,其中约20%为HER2阳性乳腺癌。近年来,抗HER2疗法的发展取得了令人满意的结果。因此,评估患者的HER2状态并确定对抗HER2治疗的敏感性至关重要。深度学习的出现推动了人工智能革命,使人工智能在预测模型中的应用越来越广泛。在医学领域,人工智能是一种新兴的模式,在促进癌症诊断和治疗,特别是有效管理乳腺癌方面的势头越来越猛。本研究旨在全面回顾当前的诊断和预测模型,这些模型利用了从组织病理切片、放射组学和HER2结合位点获得的数据。我们还评估了这些模型的进展和实际应用。此外,我们还研究了人工智能在抗HER2治疗中遇到的现有障碍。我们还提出了将人工智能整合到抗HER2治疗的评估和管理中的未来方向。本研究的结果为评估基于人工智能的抗HER2治疗提供了宝贵的见解,强调了一些关键概念和障碍,这些概念和障碍如果得到解决,可促进人工智能辅助抗HER2治疗的整合。人工智能的整合有可能提高HER2阳性乳腺癌筛查和治疗方案的精确性和定制化。
视频解读
Bilibili:https://www.bilibili.com/video/BV1H6WmesEHt/
Youtube:https://youtu.be/a1uZFW5dPaU
中文翻译、PPT、中/英文视频解读等扩展资料下载
请访问期刊官网:http://www.imeta.science/imetaomics/
全文解读
引 言
乳腺癌是全球女性发病率最高的恶性肿瘤,也是女性第二大癌症相关死亡原因。乳腺癌是一种高度异质性疾病,根据免疫组化,乳腺癌可分为四种亚型,其中 HER2 阳性乳腺癌(HER2+ BC)占所有病例的 15-20%,HER2阳性乳腺癌预后较差。HER2基因编码一种跨膜受体酪氨酸激酶,是表皮生长因子受体(EGFR)家族的成员。下游信号通路(主要是PI3K/AKT/mTOR 和 Ras/Raf/MEK/MAPK)的激活可刺激细胞增殖、存活和血管生成。由于 HER2 在 乳腺癌进展过程中扮演着不可或缺的角色,因此被认为是 HER2+乳腺癌的有效靶点。一般来说,抗 HER2 疗法分为四类:治疗性抗体、抗体偶联类药物(ADCs)、酪氨酸激酶抑制剂(TKIs)和抗HER2联合疗法。1998年,美国食品和药物管理局(FDA)批准曲妥珠单抗为最具代表性的治疗性抗体。随后,又发现了许多新型抗体,如帕妥珠单抗和马吉妥昔单抗。与曲妥珠单抗相比,这些抗体要么在与 HER2 受体结合方面表现出更强的特异性,要么具有与更多表位结合的能力,从而增强其活性并引起更强的免疫反应。最近,包括ADC和TKIs在内的新型药物被开发出来,分别用于向肿瘤靶向递送细胞毒性药物和抑制酪氨酸激酶。虽然许多药物都很有价值,但有些患者可能对它们没有反应或产生耐药性。因此,开发新的靶向药物至关重要。涉及PI3K/AKT/mTOR抑制剂、PD-1/PD-L1抑制剂、HER2靶向疫苗和CAR-T细胞疗法的临床前和临床试验,提供了很有前景的抗HER2联合策略。然而,目前曲妥珠单抗+帕妥珠单抗联合紫杉类药物仍是一线治疗HER2阳性晚期乳腺癌患者的首选方案。
人工智能在乳腺癌治疗中的应用
麦卡锡在20世纪50年代创造了人工智能(Artificial intelligence, AI)一词,用来描述计算机科学领域,即利用基于机器的方法进行预测,模仿人类在类似情况下的智能行动。与此同时,临床肿瘤学也产生了“大”数据,无论是来自分子、成像、药理学还是生物学方面的数据。这给临床医生和数据科学家带来了各种挑战,他们既要分析数据,又要为发现癌症生物学和治疗方法做出贡献。目前,人工智能驱动的癌症诊断技术在不断改进,许多技术已经达到或超过了人类诊断的准确性。包括诊断、治疗反应预测和治疗相关变化识别在内的人工智能方法正越来越多地协助复杂的决策任务。此外,在与预后相关的表型特征和基因型特征的成像表征方面也有所发现。
具体而言,人工智能在治疗乳腺癌方面已显示出巨大潜力。《2022 年乳腺癌诊断和治疗指南》提到,专家应鼓励与人工智能相关的临床研究,并开发具有知识产权的人工智能系统。2010 年初,计算机辅助检测(CAD)被用于乳腺 X 射线摄影的筛查和诊断。Lee等人根据磁共振成像(MRI)观察到的肿瘤异质性和血管生成情况,应用机器学习预测乳腺癌的预后生物标志物和分子亚型。人工智能成功应用于乳腺癌检测,为进一步应用于更广泛的诊断任务(包括肿瘤分类和癌症检测)铺平了道路。Wang 等人通过整合图卷积网络和卷积神经网络,增强了乳腺癌分类能力。利用人工智能,病理染色切片(HE 染色、IHC 染色等)的图像可通过图像处理模型(通常是机器学习方法)进行处理,从而直接破译激素和HER2受体状态表型。Taleghamar 等人使用无监督分类算法研究了多参数定量超声成像的功效。就AUC和特异性而言,机器学习技术对锥束 CT 的恶性肿瘤预测优于人类。Uhlig等人对利用乳腺锥束 CT(CBCT)预测恶性肿瘤的机器学习算法的诊断效果进行了评估,结果显示机器学习算法的 AUC 和特异性均优于人类读者。在一项类似的研究中,Mazurowski等人也发现了机器学习算法在乳腺锥束 CT 中预测恶性肿瘤的效果。从DCE-MRI 扫描中提取了一系列成像特征,利用计算机视觉预测了乳腺癌患者的远期生存率。
本综述从三个方面系统概述了与乳腺癌抗HER2治疗相关的现有人工智能研究:HER2状态预测、抗HER2治疗辅助以及与HER2阳性乳腺癌相关的人工智能研究的未来发展方向(图 1)。
图 1. 人工智能在乳腺癌抗HER2治疗中的应用
人工智能辅助评估HER2状态
准确评估 HER2 状态对乳腺癌精准治疗至关重要。因此,HER2 状态评估变得越来越复杂,对医疗服务提供者的要求也越来越高。病理学和影像学检查是最广泛使用的 HER2 状态分类方法。人工智能在这些领域发挥着至关重要的作用,下文将详细介绍其应用(图 2)。
病理检查
尽管血清标志物检测等替代治疗方法取得了重大进展,但病理学仍是癌症诊断的金标准。IHC是评估HER2状态最广泛使用的病理方法之一。图 3 显示了美国临床肿瘤学会/美国病理学家协会(ASCO/CAP)于2018年修订的乳腺HER2 IHC检测评分标准,以及人工智能如何协助HER2评分。在 HER2评分系统中,0分和1+分表示HER2 阴性,3+分表示HER2阳性。得分 2+ 的病例被认为是不明确的,需要进行原位杂交(ISH)随访。最新文献为HER2 IHC 评分为 1+ 或 2+且 ISH检测阴性的病例提出了一个潜在的新术语,即HER2低表达乳腺癌。对不同 HER2 状态的患者进行精确分类至关重要;然而,病理学家对活检结果的组织学解释具有主观性和半定量性,导致观察者之间和观察者内部的差异很大。此外,人工图像分析费时费力且容易出错,可能会影响治疗选择。随着病理图像的定量分析变得越来越重要,研究集中于自动分析。
有几种图像分析技术被设计用来自动完成数字病理学中的重复性任务,由人类专家对人类确定的真相进行明确评估。这些技术提高了观察者之间的一致性。但仍需要一定程度的用户干预。最近,深度学习(DL)这一新兴的人工智能技术彻底改变了图像识别方法。这使得实现全自动、准确的计算机辅助诊断成为可能。病理图像分析中的深度学习可大致分为两个步骤:预处理和人工智能算法。图 3 显示了使用人工智能进行 HER2 评分标准和组织病理图像分析的典型步骤。
预处理整张病理切片图像(WSI)所面临的一个挑战是其非常大的尺寸。WSI 可能包含数百亿像素,这增加了需要估算的参数数量以及所需的计算能力和内存。解决这一难题的方法之一是调整图像大小。Wang X 等人将 WSI 调整为更小的WSI,从而提高了拟议网络的性能。然而,调整图像大小会丢失细胞层面的信息。一些 HER2 自动评分研究将 WSI 划分为部分区域。由于整个 WSI 可能包含数十万个斑块,因此很可能出现假阳性。Khameneh等人使用基于超像素的支持向量机和特征学习分类器来区分 WSI 中的上皮和基质区域。他们的方法提高了分类任务的效率,减少了输入变量的数量。大多数 HER2 评分分类研究方法严重依赖大型数据集,计算成本高昂,而且在提高 HER2 评分识别率方面效果不佳。用于图像识别和处理的普通神经网络可用于从组织样本中自动提取特征,并可在大型数据集上进行训练。神经网络的宽度是指一层中神经元的数量。较宽的网络每层有更多的神经元,这有助于它学习更复杂的数据模式。不过,更宽的网络在训练时计算成本也会更高,需要更多数据才能有效泛化。Zheng 等人设计了一种具有扩展宽度的神经网络来解决这些问题。他们提出了一种具有不同大小卷积核的并行宽可分离(WP)结构,从而提高了识别率并降低了计算成本。预处理后的人工智能算法是组织病理学图像分析的关键步骤。卷积神经网络(CNN)是医学图像理解任务中研究最多的 DL 模型。表 1 显示了不同的HER2自动评分算法及其性能。HER2状态可通过评估HER2蛋白的表达或使用 ISH 测量17号染色体上的ERBB2基因扩增来确定。荧光信号通常会形成信号团,单个信号无法明确识别。建议病理学家根据自己的经验估计簇中信号的数量。不过,这种估计容易出错,而且很主观。一些研究试图找出有效的 FISH 信号分析自动化方法。Binder 等人提出了一种算法,专门用于堆叠三维切片 FISH 图像中的全局斑点计数,特别是能够在存在复杂背景的情况下有效发挥作用。该算法预测 HER2 状态的准确率高达 92.6%。Xue 等人提出了一种基于深度学习的方法,用于自动检测 FISH 图像中的 HER2 扩增状态。该方法包括两个步骤:肿瘤细胞核检测器和信号检测器。肿瘤细胞核检测器使用 You Only Looking Once version 3(YOLOv3)架构来定位 FISH 图像中的肿瘤细胞核。然后,信号检测器采用深度卷积神经网络(DCNN)将细胞核分类为 HER2 阳性或 HER2 阴性。该方法使用从 320 例浸润性 BC 连续病例中获得的 918 幅 FISH 图像数据集进行了评估。该方法的总体分类准确率为 85.33%(184 例中有 157 例),平均精确度为 0.735。Palm C等人的研究表明,HER2 IHC 和 ISH AI 联合工作流程是可行的,根据 ASCO/CAP 指南进行评估后,Cohen's κ 达到 0.94。为了比较和改进基于人工智能的最先进的 HER2 自动评分方法,开展了几项竞赛。在Qaiser的研究中,竞赛数据集包括 86 例经HER2 IHC染色的浸润性乳腺癌切片的数字化 WSI。参赛者对IHC切片进行预测评分,然后与基本事实(至少两名专家的一致评分)进行比较。他们还组织了一次人机对抗赛,其中一种自动方法的成绩略微超过了成绩最好的参赛病理学家。抗 HER2 ADC 领域的最新进展为乳腺癌治疗提供了新的治疗可能性。最近以转移性乳腺癌为重点的临床试验表明,抗 HER2 ADC德曲妥珠单抗(T-Dxd)对 HER2 阳性乳腺癌和HER2低表达乳腺癌均有疗效。IHC 0和 IHC 1+ 以前被认为在临床上无足轻重,但现在它们之间的区别引起了极大的关注,导致 HER2 阴性癌症被重新划分为HER2低表达亚型和HER2零表达亚型。由于对HER2低表达亚组的关注和重视与日俱增,Wu等人将HER2阴性癌症重新分类为 HER2 低表达亚型和HER2零表达亚型,设计了一种人工智能算法,以提高 HER2 IHC 0和 1+ 评估过程的精确性和统一性。在人工智能的辅助下,HER2 IHC 0和 1+ 评估的准确性和一致性,以及对具有异质性的乳腺癌中HER2免疫组化的评估,都能通过人工智能辅助判读得到大幅提高。
使用人工智能模型的几种自动评分方法提高了HER2诊断的准确性。利用计算机技术分析这些样本将提供重要的科学和医学信息,并使常规诊断任务自动化。然而,这些方法仍停留在研究层面,而未用于常规临床治疗。原因之一是病理切片的解读仍被认为是一个主观的过程。有人担心,自动评分方法可能无法完全复制人类病理学家的专业知识。另一个原因是,与注释大型病理切片数据集相关的成本和伦理问题尚未完全解决。
基于图像的放射组学特征中的 HER-2 状态评估
使用细针穿刺活检样本进行传统的HER2评估可能无法捕捉到所有肿瘤特征。这是由于组织样本较小和肿瘤的异质性,导致个别组织的活检结果为假阴性。放射组学是一种用于从医学影像中提取定量特征的高通量技术。由于深度学习可用于从医学图像中提取传统方法无法提取的复杂特征,因此深度学习引发了放射医学的热潮。
放射组学采用多种数学和统计技术,从医学图像中提取形状、强度和纹理等特征。有几项研究探讨了使用人工智能模型,利用放射组学特征对 BC 亚型进行分类。Wu 等人从超声图像中提取放射组学特征来预测分子生物标记物的表达。结果表明,模型的预测性能达到了0.74的AUC。Li 等人发现了 25 个与 HER2 生物特性密切相关的HER2高通量特征(AUC = 0.730)。Park 等人使用低剂量计算机断层扫描(CT)评估了四种常用机器学习模型的性能,以预测预后生物标志物和分子亚型。结果显示,随机森林模型在预测 HER2 过表达方面取得了极佳的效果,准确率达到 83%,AUC为0.88。Ha等人利用核磁共振成像和 CNN 算法预测了乳腺癌分子亚型。他们研究中使用的 CNN算法的总体准确率为 70%,HER2亚型的AUC为0.888。Demirciog提出了一种预测 HER2 富集分子亚型的模型,其AUC为0.75。
虽然人工智能模型可以预测乳腺癌的分子亚型,但要提高其预测性能,还需要大量不同的数据集。
人工智能辅助乳腺癌抗HER2治疗
术前进行抗HER2药物联合化疗是HER2阳性乳腺癌患者的标准治疗方法,被称为新辅助化疗。评估抗HER2药物治疗效果的方法有很多,其中完全病理缓解(pCR)是一个特别重要的评估标准。与部分反应或无反应的患者相比,获得完全病理反应的患者更有可能获得良好的预后。然而,并非所有临床明确的 HER2阳性乳腺癌患者都对新辅助化疗(NAC)有反应。在 HER2阳性病例中,新辅助化疗的反应率和总生存率分别为10%-41%和56-85%。此外,虽然曲妥珠单抗和化疗联合使用可有效治疗HER2过表达的乳腺癌,但也会产生不良反应和不可逆的耐药性,从而对患者的生活质量产生负面影响。研究的重点是提高 HER2阳性乳腺癌靶向治疗的疗效。
提前预测治疗反应有助于避免不必要的治疗费用,并能设计出更合适、更精确的治疗方案,最终缩短治疗时间。为防止HER2阳性乳腺癌治疗过度或不足,迫切需要一种预测模型。此外,作为恶性程度最高的乳腺癌亚型之一,HER2阳性病例具有严重的并发症,如脑转移发生率最高。通过早期预测脑转移的可能性,患者可以尽早接受治疗,防止神经认知能力下降,提高生活质量。
本节将从以下四个方面详细介绍人工智能在辅助抗HER2治疗中的应用,如表 2 和图 4 所示。
人工智能通过病理特征预测抗HER2治疗的疗效
反应预测和预后预测
病理学中最广泛使用的方法之一是苏木精和伊红(HE)染色。HE 染色图像中细胞核的形态特征在预测各种恶性肿瘤的预后方面起着至关重要的作用。此外,这些图像中包含的丰富信息还可用于跟踪疾病进展、预测生存期和设计个性化治疗方案。然而,传统的组织病理学技术可能无法满足精准医疗的需求,因为专家需要从复杂的图像中提取信息,工作量巨大。目前,针对 WSI 使用计算机辅助预测器正变得越来越流行。这是因为,除了能分析病理特征外,它们还具有放射组学的优势,如成本低、速度快和无创。
人工智能驱动的数字病理学已在肿瘤诊断和治疗中显示出功效,在提高病理评估的精确度、制定治疗策略、预测患者预后以及减轻人工劳动方面展现出巨大潜力。病理图像分析通常使用两种计算方法:传统机器学习和 DL。CNN 是用于病理图像分析的主要 DL 模型。它们可用于肿瘤检测、细胞特征量化和小组织图像分类。Abdel-Zaher 等人和Zhi 等人分别训练了深度信念网络和迁移学习来诊断乳腺癌。Kather开发了一种可预测微卫星不稳定性(MSI)的深度残差学习模型。与非人工智能方法相比,CNN模型表现出更高的准确性。因此,人工智能通过直接处理生物医学图像并从组织学图像中提取特征,克服了主观偏见。
目前,HER2+乳腺癌分型与抗 HER2 靶向疗法的疗效之间存在密切联系。这样就能更好地预测治疗效果。在病理学方面,已经出现了一种预测疗效的可靠模式;要预测反应,首先要检查 HER2 状态。Farahmand 等人提供了一种基于 HE 的算法,可以预测曲妥珠单抗对HER2阳性乳腺癌的反应。他们开发了一种新颖的CNN方法来预测治疗结果。利用 85 名接受治疗的 HER2+ 患者的 WSI,训练出的分类器在预测pCR方面的 AUC 为0.80。人工标注感兴趣区可显著提高对 HER2 状态和曲妥珠单抗反应的预测准确性。这表明,在人工智能中加入人工监督可以提高其性能。准确的预测有助于更快、更具成本效益地选择治疗方法。通过 ISH 检测到的HER2扩增或通过 IHC 检测到的过量 HER2 蛋白通常用于鉴别可能从抗HER2药物中获益的患者。这些标准已被广泛接受。然而,一些罕见病例对这一分类提出了挑战,表明可能有必要进行修改 。Farahmand 等人报告说,并非所有临床定义的HER2阳性患者都对新辅助化疗有反应。相反,缺乏HER2扩增的肿瘤可能会从抗HER2靶向治疗中获益。Bychkov 等人利用数字HE染色图像,开发了一种受HER2基因增殖条件弱监督的CNN模型。CNN 预测的基于形态学的 HER2 状态被称为 HE-HER2 评分。在此,我们评估了HE-HER2 评分与远处无病生存期(DDFS)之间的关联。接受曲妥珠单抗治疗的显色原位杂交法(CISH)HER2阳性乳腺癌患者中,机器学习得出的HE-HER2评分高于中位数的患者的无远处疾病生存率更高。这些研究结果表明,HER2相关形态学与抗HER2疗法的疗效相关,可作为治疗结果的预测指标。更重要的是,Bychkov 等人发现,他们的 CNN 模型可以识别可能从抗 HER2 治疗中获益的CISH判定HER2阴性病例。这一发现对只有 HER2+ 状态的患者才需要抗 HER2 治疗的传统假设提出了挑战,并表明可能有更多的患者可以从这种治疗中获益。
乳腺癌的pCR与肿瘤免疫微环境之间的关系一直是研究者所关注的问题,尽管目前仍存在许多争议。例如,高 Ki-67 指数(≥ 50%)被认为是 HER2 阳性乳腺癌患者pCR的独立预测因素。此外,PD-L1的表达与肿瘤浸润淋巴细胞(TILs)相关,是pCR的重要预测因素。2023 年,Huang 等人利用多染色组织病理学图像开发了一种自动工作流程,用于从NAC前活检中预测乳腺癌的pCR。研究人员将PD-L1、CD8+ T 细胞和 CD163+ 巨噬细胞的 IHC 数据与肿瘤免疫微环境的 HE 染色图像整合在一起,创建了一个复合特征集,用于预测对 NAC 的反应。这个来自 WSI 特征提取管道的机器学习模型在预测HER2阳性乳腺癌患者对NAC的反应方面表现出很高的准确性(AUC = 0.8975),超过了病理学家手动生成的特征。该ML模型以其自动化、精确性、全面性、可解释性和可重复性为特点,突出了肿瘤免疫微环境信号如何作为预测标记物或完善初始治疗的选择。这些见解对于推进抗HER2精确治疗至关重要。
预测复发
作为一种高度异质性癌症,约20%的HER2阳性乳腺癌患者在接受靶向和化疗后出现转移或复发。通过预测手术后复发的可能性,可以提前提供个性化的治疗方案。
杨等人提出了一种新型CNN模型,利用HE染色的WSI特征和临床数据精确预测 HER2+ 病例的复发风险。他们使用ResNet50模型从入选样本中提取图像特征和临床数据。然后对样本进行分割,并使用2倍交叉验证进行验证。结果表明,与单纯的临床数据相比,使用基于HE图像特征的计算机辅助系统可以提高预测能力。
总之,人工智能技术与 HE 成像相结合,具有准确性高、成本低、速度快、创伤小等诸多优势,在预测抗 HER2 治疗效果方面显示出强大的适用性。
人工智能通过成像组学特征预测抗 HER2 治疗效果
除病理成像外,各种放射成像技术也被用于预测抗 HER2 治疗的疗效。每种方法都有其独特的优缺点。正电子发射断层扫描可用于监测肿瘤对化疗的反应。它的突出缺点是需要放射性核素造影剂和高昂的费用。DCE-MRI还被用于预测 BC 患者的化疗结果。尽管取得了一些有希望的结果,但其高昂的成本使其较难普及。最近,弥散光学成像(DOI)被用于监测 BC 患者对化疗的反应。由于获取数据和重建具有合理分辨率的容积图像的过程漫长,DOI 并未作为标准方法广泛应用于临床实践。研究表明,定量超声(QUS)方法可在组织特征描述和肿瘤反应监测方面取得良好效果。它还被用于评估 BC 对化疗的反应。尽管超声成像具有潜力,但它无法提供与 CT 或 MRI 相同质量的三维容积信息,因此限制了其广泛应用。
影像组学利用基于人工智能的特征描述,通过识别宏观、细胞和分子特征,提供比人类观察更详细的信息。基于人工智能的预测模型还能为评估治疗反应提供可靠的非侵入性生物标志物。与核心活检标本相比,放射线组学分析可对整个肿瘤进行无创评估,从而全面了解肿瘤的病理特征。这促使基于人工智能的放射成像技术得到广泛应用。
基于人工智能的核磁共振成像在抗 HER2 治疗中的应用
在HER2阳性乳腺癌病例中,磁共振成像是预测NAC后pCR最准确的方法。此外,有研究表明,DCE-MRI能有效评估肿瘤生物学特征,包括亚型基因组学和受体状态。除了现有的生物学、临床和病理学预测指标外,磁共振成像还能提供额外的预测价值。该技术有望对患者进行分层,并制定个性化的治疗方案。
Cain根据计算机从治疗前DCE-MRI提取的特征,开发了一种多变量机器学习模型,可预测新辅助治疗的pCR。在三阴性/HER2阳性(TN/HER2+)亚组中,预测pCR的AUC为0.707,表明对这两种预后较差的亚型有较好的预测效果。
Bitencourt 等人使用 MRI 评估 HER2 基因扩增和 HER2阳性乳腺癌病例 NAC 后的 pCR。该机器学习模型是利用五倍交叉验证和粗决策树开发的。利用机器学习模型对放射组学和基于临床 MRI 的参数进行比较,然后进行相关性和 ROC 分析。预测 HER2 异质性的最佳模型达到了97.4%的诊断准确率。包含放射学和临床MRI参数的模型在预测pCR方面表现最佳,诊断准确率为 83.9%,灵敏度为 86.5%,特异性为 80.0%。这种机器学习模型有可能帮助识别从抗HER2治疗中获益的患者,并在临床实践中发挥重要作用。
Mazurowski等人利用计算机视觉算法从诊断为浸润性BC患者的DCE-MRI扫描中提取并选择预后成像特征。他们发现有 20 个放射学特征与远期 RFS 显著相关。其中,异质性、大小和灌注的预测值最高,C 指数分别为 0.64、0.77 和 0.70。
一些研究报告称,瘤内 HER2 病理异质性与预后较差有关。2018 年,吴也支持这一观点。研究人员利用对比增强 MRI,通过网络分析确定了肿瘤内亚区域。这些亚区对应不同的灌注水平,并量化它们之间的相互作用。在对受体状态、病理反应、年龄和肿瘤体积等临床因素进行调整后,研究人员发现了一种可预测RFS的放射学特征。该特征显示了灌注不良区域的分布和丰度。乳腺磁共振成像扫描显示,预后不良的肿瘤中灌注不良区域的发生率高于不严重的肿瘤。Drukker 等人根据与整个NAC治疗过程中动态MRI造影剂增强动力学相关的放射学特征,利用长短期记忆建立了一个 DL 模型。该模型预测了 2 年的 RFS,C指数达到0.80。这项研究使用了递归神经网络 (RNN)(一种专门的 DL 架构)来吸收和学习多个时间点收集的成像特征。
腋窝淋巴结(ALN)是乳腺癌症转移的主要途径。一项为期 10 年的随机临床试验显示在早期浸润性病例中,评估ALN状态起着至关重要的作用。目前,评估ALN状态的标准方法包括前哨淋巴结活检(SLNB)和腋窝淋巴结清扫(ALND)手术。然而,这些方法存在手术相关并发症的风险,如上肢活动范围减小、腋窝网络综合征、淋巴水肿和麻木。Yu等人利用肿瘤和ALN的放射学特征,开发了一种用于预测腋窝淋巴结状态的ALN阴性肿瘤放射学特征。他们应用机器学习方法来识别预测性MRI特征。结果表明,整合了临床和病理特征、肿瘤MRI放射组学、淋巴结MRI放射组学和分子亚型的多组学模型表现最佳。此外,还观察到NAC治疗前后预测性放射学特征存在明显差异,尤其是灰度依赖矩阵特征。此外,某些肿瘤微环境特征与核磁共振成像放射组学有关,包括甲基化位点类型和长非编码RNA。这些发现可能解释了在NAC前后观察到的关键放射学特征的显著变化。这项研究表明,多组学模型可以准确预测早期浸润性BC的ALN转移。包含的数据越多,预测就越准确。该模型具有很高的预测能力,可以指导临床决策,避免患者接受不必要的SLNB或ALND手术。
与其他分子亚型相比,HER2阳性乳腺肿瘤的多灶/多中心疾病和皮肤-乳头-乳晕周围受累的比例更高。图像分析与人工智能相结合,可帮助放射科医生分割区域区域和量化成像特征。最近为此开发了几款计算软件程序。Dashevsky 等人采用了基于留空交叉验证的支持向量机(SVM)模型来预测接受保乳手术(BCS)的 HER2+ 患者的可切除性。该模型使用 21 个术前 MRI 构建的肿瘤特征,灵敏度达到 71.4%,特异度达到 74.4%。这些结果表明,基于核磁共振成像的人工智能模型有助于手术决策,可为可能需要再次切除的患者推荐宽切缘或乳房切除术。
基于人工智能的超声成像在抗 HER2 治疗中的应用
超声成像通常用于评估治疗前、治疗中和治疗后对 NAC 的反应。根据中国抗癌协会乳腺癌指南,患者应在NAC治疗后每两个周期接受一次超声检查,以评估治疗反应。与核磁共振成像相比,超声对患者来说更方便、更经济、更舒适。Jiang 等人假设,结合治疗前和治疗后的超声图像的DL放射模型可以准确预测pCR。治疗前的图像与原发肿瘤特征相关,而治疗后的图像则直接反映了反应状态。为了选择特征和构建放射学特征,研究人员使用了最小冗余最大相关性算法和最小绝对缩小和选择算子进行回归。通过利用放射组学特征独立检测临床病理风险因素,创建了利用DL放射组学的提名图。对模型性能的评估包括校准、判别和临床实用性。对HER2阳性亚组的预测效果良好,AUC为0.95。Liu 等人设计并验证了基于纵向超声图像预测pCR的连体多任务网络。他们招募了 393 名经活检证实的HER2阳性乳腺癌患者。所提出的连体多任务网络由两个子网络组成,整合了NACT周期前后纵向超声图像的多尺度特征以及提取的动态信息。
总之,虽然单一组学模型取得了令人满意的结果,但其适用性仅限于特定类别的因素,包括病理图像、放射学和临床指标。这类模型仅从图像或分子层面分析疾病预后,没有充分利用其他方面产生的大数据。这可能会遗漏影响疾病预后的其他因素。因此,基于多组学数据的人工智能方法具有广阔的发展前景。
人工智能协助开发新型抗HER2疗法
抗 HER2 治疗的关键挑战之一是确定特异性表皮生长因子受体和 HER2 抑制剂。各种计算方法,包括定量结构-活性关系、虚拟筛选和药理模型,都被用来识别潜在的抑制剂。以前开发的分类模型可区分非活性和活性表皮生长因子受体。2022 年之前,没有任何机器学习模型能够选择性地识别针对特定表皮生长因子受体和HER2同工酶的抑制剂。因此,迫切需要开发一种预测系统来指导设计同工酶特异性抑制剂。Saini 等人构建了一个基于知识的计算模型,能准确预测分子对表皮生长因子受体和HER2同工酶的特异性。该模型基于一个包含 519 种抑制表皮生长因子受体和HER2同工酶的化合物的数据集。他们使用 9 种指纹类型、4 种分类器和 2 个不同的数据集(表皮生长因子受体和HER2同工酶)开发了 72 个分类模型。对于表皮生长因子受体(HER2)和表皮生长因子受体(EGFR)特异性数据集,使用IBK和随机森林开发的模型表现最佳。在每个数据集中,都使用了功能组和支架分析来确定流行的核心和片段。hey 还结合最准确的模型开发了一款名为EGFRisopred的应用程序,用户可以通过它预测化合物对EGFR或HER2的特异性。通过向研究人员提供这一免费工具,可以确定这些靶点的新抑制剂。
为了 理解当前曲妥珠单抗突变亲和力值升高的结构含义,并有效鉴别针对 HER2 的曲妥珠单抗高亲和力突变变体,Balakrishnan 等人。开发了一种支持向量回归 (SVR) 模型,用于预测组合突变体中的表观事件。研究人员研究了 193 个单个曲妥珠单抗突变体,包括其亲和力值和各种氨基酸序列衍生描述符。利用遗传算法-支持向量回归(GA-SVR)包装器实现了 SVR 超参数和描述符子集的选择。最终的机器学习模型准确预测了一组六个组合突变体和一个单一突变体,Rpre2预测值为0.72。值为 0.72。根据该模型的描述符分析,曲妥珠单抗结合亲和力的变化是由突变引起的二级结构变化造成的。对曲妥珠单抗野生型和突变型变体分别进行了100 ns和20ns的重复分子动力学模拟。这项研究发现,重链互补决定区3(CDR-H3)的突变可以加速开发出更有效的曲妥珠单抗,其结合亲和力和适销性都会显著提高。
人工智能可预测抗HER2治疗的结果
乳腺癌脑转移(BCBM)是HER2阳性乳腺癌的常见并发症。然而,最近一项对2000年至2020年间发表的研究进行的荟萃分析发现,不同亚型的乳腺癌脑转移发生率各不相同。在 HER2阳性乳腺癌患者中,BCM 的汇总累积发生率为 31%。其他研究报告称,每年有 13% 的转移性HER2阳性乳腺癌患者发生BCBM。在 mBC 和种系 BRCA1/BRCA2 基因突变的患者中,BCBM 的发病率为 67%。脑转移的早期症状通常较轻,容易被患者忽视。头痛、呕吐和偶尔意识丧失等症状可能不会被认为是脑转移。与其他部位的转移相比,脑转移瘤需要不同的治疗方法。目前的指南并不建议对原发性乳腺癌患者进行BCBM的常规监测,因为很难识别那些高危患者。有些患者可能会延迟就医,直到症状严重到无法忍受时才就医,这可能会错过最佳治疗时间窗口。
Takada 等人建立了一个数学模型,旨在预测接受NAC和曲妥珠单抗术后的 HER2阳性原发性乳腺癌患者发生 BCBM 的风险。该模型预测了 BCBM 事件,其定义为脑部是首个复发部位或在转移治疗后发现 BCBM。临床病理学基线因素被用于开发模型,该模型是通过交替决策树算法(ADTree)训练而成,能够定量预测结果。模型识别 BCBM 高危患者的准确性得到了验证,AUC 为 0.871。唯一的缺陷是缺乏外部队列对模型进行验证,未来需要进行更严格的验证。
未来展望:我们将何去何从?
人工智能是一种新颖的医学工具,具有预测治疗效果的潜力。虽然大多数研究表明,其模型达到甚至超过了临床医生的表现,但在现实世界中成功应用的却寥寥无几。实施困难的原因可能包括标准数据库不足、行业标准不统一、特定的临床应用场景、政策和监管支持等。此外,随着近年来医疗记录的数字化和日益广泛的共享,信息泄露和隐私保护问题日益突出。
目前,对人工智能在抗HER2治疗中的应用进行研究的前瞻性研究和随机临床试验数量有限,其中大部分存在较大偏倚。因此,我们应加强实验设计与临床实际的相关性,减少系统误差。同时,还应理性评价既往研究和应用前景,保护患者利益,减少研究浪费,不盲目夸大研究结果。第二个挑战是由于代码和数据源有限,人工智能模型难以复制。由于各种预处理方法和预测目标不一致,不同模型的稳定性难以评估。因此,我们应让更多中心参与大数据,鼓励共享代码和开发标准化数据集,以支持跨学科的人工智能模型。第三步是整合多组学信息,实现更精准、更个体化、更可预测的医疗体质。人工智能有能力以超越人类能力的方式处理和整合海量数据。人工智能驱动的抗 HER2 治疗综合预测模型应涵盖与患者相关的所有临床数据,并促进整个医疗过程。因此,当务之急是提高信息收集的完整性和客观性,以便在不同中心之间顺利共享大量数据。要将人工智能引入医疗系统,我们必须了解患者、医务人员和公众的信任度和接受度。此外,人工智能技术要想取得成功并发挥作用,需要大量人员参与收集医疗数据,同时保护大量人群的隐私。因此,建立健全监督管理制度,控制实际风险,确保这一新兴系统的安全十分重要。更重要的是,必须建立全面的法律和伦理框架,以实现大型数据集的共享,促进人工智能系统在多个地区和中心的广泛应用。最后,随着抗 HER2 药物的快速出现及其疗效的验证,基于人工智能的抗 HER2 治疗模型需要更多的数据来改进。免疫检查点抑制剂在肿瘤免疫疗法中的应用已显示出巨大的临床优势,表明其作为一种有效治疗方法的潜力。人工智能这一先进技术的融入,通过模型构建的自动化,实现了肿瘤免疫治疗结果的个性化预测,从而促进了患者个体化治疗方法的发展。
总之,由于预测抗 HER2 疗法疗效的复杂性,人工智能与人类智能之间需要相互学习。科研人员、企业和医疗保健专业人员之间的合作对于建立全面的数据库和行业规范、克服技术障碍、促进创建人工智能支持系统(能够精确识别抗 HER2 治疗的合适候选者、准确预测疗效、推动人工智能辅助治疗的采用以及确保医生和患者的信心)至关重要。
结 论
人工智能作为一项创新技术,有助于整合多个数据集。人工智能可根据构建的模型自动预测抗HER2治疗效果,从而实现对HER2阳性乳腺癌患者的个体化治疗。然而,这也面临着一些挑战。未来,人工智能辅助系统有望更准确地模拟肿瘤生物学行为和药物治疗反应。这将惠及大部分HER2阳性乳腺癌患者,并提高医疗护理的效率和质量。
代码和数据可用性
这篇稿件没有生成任何代码或数据。附加材料(图形摘要、幻灯片、视频、中文翻译版本和更新材料)可以在在线DOI或iMetaScience网站(http://www.imeta.science/)中找到。
引文格式:
Xinpei Deng, Yixuan Yan, Zekai Zhan, Jindong Xie, Hailin Tang, Yutian Zou, Jian Tu, Peng Liu. 2024. "A glimpse into the future: Integrating artificial intelligence for precision HER2-positive breast cancer management." iMetaOmics e19. https://doi.org/10.1002/imo2.19
作者简介
邓鑫霈(第一作者)
● 中山大学肿瘤防治中心乳腺科硕士研究生。
● 研究方向为抗HER2治疗的多组学研究及乳腺癌转移、代谢、耐药方面的分子机制研究。
闫艺萱(第一作者)
● 中山大学光华口腔医学院附属口腔医院在读种植科硕士。
● 研究方向为种植体周围炎。
詹泽凯(第一作者)
● 中山大学医学院本科生。
● 研究兴趣为乳腺癌抗HER2治疗及耐药相关分子机制研究。
谢锦东(第一作者)
● 中山大学肿瘤防治中心乳腺科博士研究生。
● 研究方向为生物多组学在乳腺癌诊断及治疗中的应用。
邹宇田(通讯作者)
● 中山大学肿瘤防治中心乳腺科医师/临床博士后,入选“中国博士后创新人才支持计划”。
● 主要研究方向为乳腺癌耐药的分子机制及靶向策略、肿瘤微环境介导的免疫逃逸机制等。已发表SCI论文50余篇,其中以第一/通讯作者在iMeta, iMetaOmics, Nature Communications, Advanced Science, EBioMedicine等高水平国际期刊发表学术论文18篇(7篇入选ESI Top 1%高被引论文);总被引用超2000次。担任iMeta, Int Immunopharmacol等期刊青年编委,受邀为Oncogene, iScience, JAMA Network Open等百余本期刊审稿人。
涂剑(通讯作者)
● 医学博士、三级教授,博士生导师,留美归国人员,先后入选中国科协科技人才奖项评审专家、全国研究生教育评估监测专家库专家、广西科技专家库专家。
● 目前是中国化疗药理、生物化学与分子药理,中国抗癌协会肿瘤标志专业委员会专委,在top期刊Hepatology, Gastroenterology, Nature Communications,Am J Physiol Gastrointest Liver Physiol (1区)等国内外重要期刊发表相关论文近百篇,并担任Frontiers in Oncology、Frontiers in Pharmacology、《南方医科大学学报》和《生物技术通报》等杂志的审稿或编委,主要从事炎症、肿瘤等疾病的发病机理与防治等相关研究,主持国家自然科学基金、广西区与湖南省自然科学基金等课题多项,获得广西区科技成果自然科学奖1项(主持)。
刘鹏(通讯作者)
● 中山大学肿瘤防治中心乳腺科副主任医师,硕士生导师,肿瘤学博士。
● 长期从事乳腺癌的临床与基础研究,致力于乳腺癌发病与转移的分子机制,在乳腺癌基因功能研究方面积累了扎实的研究基础和研究技能。在iMetaOmics, Molecular Cancer, Cancer Letters, Cell Death & Disease, Oncogene, Science China Life Sciences等SCI期刊上以第一或通讯作者(含共同)发表论著20余篇;获得中国专利3项。担任中国抗癌协会肿瘤微创治疗专业委员会乳腺学组委员,广东省抗癌协会乳腺癌专业委员会委员,广东省胸部肿瘤研究会乳腺癌专业委员会委员,广东省医院协会肿瘤生物治疗专业委员会委员,广东省医院协会肿瘤防治管理分会委员,广东省精准医学应用学会乳腺肿瘤分会委员,广东省医学会肿瘤学分会乳腺学组委员。
iMetaOmics
更多资讯
● iMeta姊妹刊iMetaOmics(定位IF>10)欢迎投稿!(2024.2.27)
● iMeta姊妹刊iMetaOmics编委招募 (定位IF>10) (2024.3.2)
● iMeta姊妹刊iMetaOmics电子版和印刷版ISSN申请获批(2024.4.1)
● iMeta姊妹刊iMetaOmics投稿系统正式上线(2024.4.17)
● iMeta姊妹刊iMetaOmics主编正式官宣(2024.4.22)
● 出版社iMetaOmics主页正式上线!(2024.4.28)
● iMetaOmics | 浙江大学宗鑫组揭示两猪种宿主-肠道菌群互作差异
● iMetaOmics | 罗鹏/袁硕峰/苗凯/程全发表STAGER: 生成式人工智能可靠性的标准化测试和评估推荐
● iMetaOmics | 徐州医科大杨欢组揭秘沙门氏菌-宿主-微生物群在免疫与代谢中的相互作
● iMetaOmics | 中科院动物所金坚石组综述16S rRNA基因扩增子测序技术的“前世今生”
● iMetaOmics | 浙大张天真组完成二倍体棉种泛基因组构建
● iMetaOmics | 张勇/李福平-先进糖蛋白组学在男性生殖研究中的潜在应用
● iMetaOmics | 暨南大学潘永勤/杨华组-炎症蛋白联合检测利于诊断甲状腺乳头状癌和结节性甲状腺肿
● iMetaOmics | 张开春组利用多组学方法揭示甜樱桃加倍后果色变化的候选基因
● iMetaOmics | 杜娟/林婷婷-慢性泪囊炎患者眼部菌群类型和纵向菌群变化
● iMetaOmics | 陈汉清/陈俊综述有关肝细胞癌治疗的新兴纳米医学策略
● iMetaOmics | 基因组所刘永鑫/卢洪评述微生物在提高杂种优势中的作用
●iMetaOmics | 上科大刘雪松组开发基于通路的肿瘤细胞鉴别工具TCfinder
更多推荐
(▼ 点击跳转)
iMeta | 引用13000+,海普洛斯陈实富发布新版fastp,更快更好地处理FASTQ数据
iMeta | 德国国家肿瘤中心顾祖光发表复杂热图(ComplexHeatmap)可视化方法
1卷1期
1卷2期
1卷3期
1卷4期
2卷1期
2卷2期
2卷3期
2卷4期
3卷1期
2卷2期封底
2卷4期封底
3卷2期
3卷3期
3卷3期封底
期刊简介
“iMeta” 是由威立、肠菌分会和本领域数百千华人科学家合作出版的开放获取期刊,主编由中科院微生物所刘双江研究员和荷兰格罗宁根大学傅静远教授担任。目的是发表原创研究、方法和综述以促进宏基因组学、微生物组和生物信息学发展。目标是发表前10%(IF > 20)的高影响力论文。期刊特色包括视频投稿、可重复分析、图片打磨、青年编委、前3年免出版费、50万用户的社交媒体宣传等。2022年2月正式创刊发行!发行后相继被Google Scholar、ESCI、PubMed、DOAJ、Scopus等数据库收录!2024年6月获得首个影响因子23.7,位列全球SCI期刊前千分之五(107/21848),微生物学科2/161,仅低于Nature Reviews,同学科研究类期刊全球第一,中国大陆11/514!
“iMetaOmics” 是“iMeta” 子刊,主编由中国科学院北京生命科学研究院赵方庆研究员和香港中文大学于君教授担任,定位IF>10的高水平综合期刊,欢迎投稿!
联系我们
iMeta主页:
http://www.imeta.science
姊妹刊iMetaOmics主页:
http://www.imeta.science/imetaomics/
出版社iMeta主页:
https://onlinelibrary.wiley.com/journal/2770596x
出版社iMetaOmics主页:
https://onlinelibrary.wiley.com/journal/29969514
iMeta投稿:
https://wiley.atyponrex.com/journal/IMT2
iMetaOmics投稿:
https://wiley.atyponrex.com/journal/IMO2
邮箱:
office@imeta.science