点击蓝字 关注我们
面向蜱病毒组及新发蜱媒病毒的研究:
方案、挑战与展望
iMetaOmics主页:http://www.imeta.science/imetaomics/
研究论文
● 原文链接:
https://onlinelibrary.wiley.com/doi/10.1002/imo2.70022
● DOI: https://doi.org/10.1002/imo2.70022
● 2025年5月12日,军事科学院军事医学研究院曹务春研究员、中国医学科学院/北京协和医学院病原生物学研究所任丽丽研究员、山东大学齐鲁医院陈玉国教授等在iMetaOmics在线发表了题为“Towards tick virome and emerging tick-borne viruses: Protocols, challenges and perspectives”的文章。
● 本文提出标准化研究方案,涵盖现场调查、样本处理、测序文库构建、病毒基因组组装、系统发育分析及分类鉴定,为蜱病毒组研究提供统一框架。同时探讨了抽样代表性、测序污染和分类学差异等关键挑战,并展望如何利用生物信息学与机器学习技术追踪病毒进化、阐明病毒-蜱-宿主互作机制,以及加强高危区域监测。最后特别强调,全球协作与数据共享对完善研究方法、指导精准干预以应对新发蜱媒疾病具有至关重要的意义。
● 第一作者:叶润泽、程诺、李宇宇
● 通讯作者:曹务春(caowuchun@126.com)、任丽丽(renliliipb@163.com)、陈玉国(chen919085@sdu.edu.cn)
● 合作作者:王宁、王晓阳、邓彪
● 主要单位:山东大学齐鲁医院、军事科学院军事医学研究院(病原微生物生物安全全国重点实验室)、中国医学科学院/北京协和医学院病原生物学研究所
亮 点
● 本研究提出的标准化研究方案涵盖现场调查、样本处理、测序文库构建及下游数据分析,为蜱病毒组研究提供了统一框架;
● 针对病毒基因组组装、注释与分类提出的分析策略,深化了我们对蜱媒病毒多样性及其对公共卫生和兽医学潜在威胁的认知;
● 文中同时探讨了蜱病毒组研究中的关键技术挑战与空白领域,并提出了未来研究方向建议。
摘 要
新发蜱媒病毒已被视为重大公共卫生威胁。高通量宏转录组测序技术的应用彻底革新了我们对蜱病毒组的认知,大量新病原体得以发现。然而,研究方法的不一致性阻碍了有效的数据整合与比较分析。为此,我们提出了一套标准化研究方案,涵盖现场调查、样本处理、测序文库构建、病毒组装、系统发育分析和分类鉴定,为蜱病毒组研究提供了统一框架。研究还探讨了样本代表性、测序污染和分类差异等关键挑战。此外,我们展望了如何运用生物信息学和机器学习技术来追踪病毒进化、阐明病毒-蜱-宿主相互作用机制,以及加强高风险地区的监测能力。最后,我们特别强调了全球合作与数据共享的至关重要性,这对完善研究方法、指导针对性干预措施以减轻新发蜱媒疾病的威胁具有重要意义。
视频解读
Bilibili:https://www.bilibili.com/video/BV1TREzz9Egk/
Youtube:https://youtu.be/ASc3DLcK6zM
中文翻译、PPT、中/英文视频解读等扩展资料下载
请访问期刊官网:http://www.imeta.science/imetaomics/
全文解读
引 言
近年来,新发蜱媒病毒不断被发现,其中许多已被证实可感染人类,对全球公共卫生构成重大威胁。美国国立卫生研究院(NIH)高度重视蜱媒疾病带来的公共卫生挑战,于2019年发布了《蜱媒疾病研究战略计划》,旨在加速多领域协同研究、深化对蜱媒疾病的认知,并推动有效诊断、预防和治疗工具的研发。目前,针对蜱媒病原体的研究方法主要包括传统病原检测技术和高通量测序技术。蜱媒病毒相关研究也呈现稳步增长趋势(见文本S1,图S1)。传统病原检测方法仅能识别已知病原体,通量有限且高度依赖研究者对当地蜱种的经验认知,这使得新发病原体的鉴定面临挑战。相比之下,基于高通量测序的宏转录组学技术极大拓展了我们对蜱病毒组的认知,有力促进了新发蜱媒病毒的发现。组学研究的发展为理解蜱及其携带病原体提供了关键基础,使我们能够及时、全面地掌握病原体特征,从而针对性防控蜱媒疾病威胁。然而,研究方案缺乏统一标准和分析框架,导致研究结果可比性和数据整合面临挑战。
为此,我们提出了一套蜱病毒组标准化研究方案,涵盖现场调查、样本处理、宏转录组测序、病毒基因组组装、系统发育分析和病毒分类鉴定,旨在全面准确地解析蜱病毒组特征并高效识别新病毒。该方案将为蜱媒疾病暴发的精准防控提供科学依据。此外,本文还探讨了当前蜱病毒组研究面临的挑战及未来研究方向。
结 果
建议的现场调查原则
本方案提出的现场调查原则包括研究设计、采样点选择、样本采集与保存方法,以确保后续宏转录组测序与分析顺利进行(图1A)。
研究设计
现场调查的采样点应根据具体研究目标确定。不同地区的蜱媒病毒存在显著差异,因此研究设计需因地制宜。在制定蜱病毒组研究方案时,需重点考虑以下因素:目标研究区域、潜在蜱虫种群、蜱种多样性、研究区域的生态多样性、采样点的代表性、不同采样点的时间安排,以及各采样点样本的临时储存条件。
采样点选择
蜱主要栖息于森林、灌木丛、草原和半荒漠等开阔的自然环境中。不同蜱种的分布与气候、土壤、植被及宿主多样性等因素密切相关。例如,全沟硬蜱(Ixodes persulcatus)常见于高纬度针阔混交林,而亚洲璃眼蜱(Hyalomma asiaticum)则分布于塔克拉玛干沙漠西缘、吐鲁番盆地和准噶尔盆地。建议通过查阅文献或实地考察确定当地蜱种的生态区系,并采用分层抽样法覆盖多样化生境。选定采样点后,需根据文献或预调查确定蜱的活跃季节,以确保采样成功率。
蜱样本的采集、保存及元数据记录(表S1)建议参照附件文本S2中的标准化流程执行。
建议的样本处理与测序方案
在蜱病毒组研究中,样本处理与测序文库构建是确保测序成功和数据有效性的关键前期步骤。恰当的样本处理方法可显著提高病毒检测的准确性与灵敏度,为后续分析奠定可靠基础。该流程包括制定合理的样本混合策略、文库制备、详细元数据记录等环节,以保证结果的可重复性和可比性(图1B)。其中,核酸提取、文库质量控制和测序深度等关键环节需精心设计,以最大限度捕获病毒序列。具体方法详见附件文本S3。
建议的病毒组分析流程
高效的数据分析有助于解析病毒多样性、分布特征及潜在公共卫生风险。该流程涵盖病毒组组成与多样性分析、序列组装与比对、病毒分类学鉴定、污染与假阳性处理、数据共享与合作等多个环节(图1C,文本S4)。最终通过公共平台实现数据共享,确保研究透明度并促进科研协作。这些分析步骤不仅能深化研究深度,还可为后续科学探索提供坚实基础。
实施要点
在执行上述方案时,需重点关注灵活操作、报告与沟通机制、团队构成与能力要求等关键要素(文本S5)。
图1. 蜱病毒组研究方案
(A) 样品处理和测序, (B) 病毒分类和序列上传, (C) 下游数据分析。
挑 战
基于现有研究发现,蜱病毒组揭示了病毒、蜱类、宿主与环境之间多维而复杂的相互关系。蜱病毒组的分布受到蜱种遗传特征、宿主多样性及生态环境复杂性的共同塑造,这提示其在蜱及蜱媒疾病防控中的重要作用。随着标准化方法和整合数据资源的建立,未来我们将能对蜱病毒组开展更全面的研究。然而该领域仍面临诸多挑战,同时也蕴含着丰富机遇(图2)。
采样代表性问题
由于气候条件、宿主多样性及环境复杂度的差异,不同区域蜱种的生态分布存在显著异质性。虽然灵活的采样策略提高了蜱种生境的覆盖度,但标准化操作与适应性调整之间的平衡仍具挑战性。采用同种同性别同发育阶段的蜱混合测序虽能提升成本效益,但缺乏系统验证其是否真实反映病毒多样性(文本S6)。
测序污染控制
高通量测序中试剂、实验室环境或标签跳跃(index-hopping)导致的污染会引入假阳性结果和定量偏差。严格的质控策略包括病毒基因组完整性验证(保守结构域分析、RT-PCR/Sanger测序确认)和阴性对照设置(无菌水、空白试剂),但大规模研究中的可扩展解决方案仍显不足(文本S7)。
未知致病性病毒的高占比
许多蜱媒病毒的起源存在模糊性,可能来自环境、植物、真菌或宿主,其致病性常未明确。即使是动物源性病毒(如塔城蜱病毒1、内罗毕羊病毒)也被发现存在人畜共患风险。持续监测与实验验证对评估传播风险至关重要(文本S8)。
宏转录组病毒的生物学验证
宏转录组获得的病毒序列不能直接证实其生物学活性。病毒分离培养是解决该问题的重要方法,但大多数蜱媒病毒难以通过传统培养技术分离。当无法获得活病毒时,可采用三种方法验证其感染潜能:组织定位荧光原位杂交(FISH)、蛋白检测免疫荧光试验(IFA)以及SPF动物实验传播模型(文本S9)。
病毒分类标准的差异性
不同病毒科的分类标准存在显著差异,这为蜱病毒组研究带来挑战。虽然国际病毒分类委员会(ICTV)提供了保守基因同源性阈值,但属/种划分标准各异:内罗病毒科(RdRP相似性<93%)、白纤病毒科(RdRP同源性<95%)。对于未分类病毒(如黄病毒科),建议采用临时阈值(RdRP氨基酸相似性<90%或全基因组核苷酸相似性<80%)。基于遗传差异的动态调整和全球协作对分类学统一至关重要(文本S10)。
新定义病毒的界定
病毒组学研究发现了许多未被定义的病毒,这些病毒填补了进化空白并拓展了分类边界。它们往往超越现有病毒目/科的分类框架,我们将其归类为超分支群(superclades/supergroups)。由于缺乏生物学特性证据,这些病毒的分类仍存障碍。尽管极大丰富了蜱媒病毒认知,其生物学地位与分类归属仍需进一步探索验证(文本S11)。
病毒宿主溯源与致病性判定
宿主-病原体关联及致病性评估需整合测序技术、机器学习和实验验证(包括病毒分离与动物模型)。最直接的证据仍是对动物群体或人类感染的确认。在病毒阳性区域开展主动监测对确认自然疫源地与人畜共患风险具有关键价值(文本S12)。
图2. 蜱病毒组研究的未来挑战
展 望
蜱病毒组将加速新蜱媒病毒的发现与溯源
标准化的蜱病毒组研究流程可实现新发病毒的主动监测与进化溯源。大规模宏转录组研究不仅能完善病毒分类体系,更能为公共卫生预警提供依据。生物信息学工具可解析病毒遗传起源与宿主适应机制,指导在病毒阳性区域开展针对性监测,从而绘制传播路径与宿主图谱。这种整合研究策略将显著提升对新发蜱媒病原体威胁的防控能力(文本S13)。
蜱病毒组为病毒致病机制研究提供基础数据
蜱病毒组研究为了解蜱媒病毒的生物学特性与致病机制奠定基础。通过对已知及新病毒的发现,可指导病毒分离与特征鉴定。比较不同蜱种、发育阶段及吸血状态的病毒组特征,能阐明蜱在病毒传播中的作用,并揭示病毒在蜱体内及蜱-宿主间的关键传播线索。例如,通过评估经卵传播或吸血传播效率,可解析病毒动态传播规律与生态分布特征。此外,病毒-宿主受体互作机制的发现对探索病毒感染性与致病机理具有重要价值。这些数据将为靶向干预措施设计和有效治疗策略开发提供关键依据。
蜱病毒组将促进病毒-蜱-宿主互作研究
大规模蜱病毒组数据为探索跨蜱种感染机制及病毒-蜱-宿主多重互作提供证据。解析病毒-蜱互作可揭示病毒复制与蜱遗传特性的关联,明确蜱媒传播功能;病毒间互作(如共感染现象)会影响病毒分布与传播效率;而病毒-宿主互作则通过揭示病毒与宿主免疫系统或受体的结合机制,决定传播成功率,为阐明感染性与致病机制提供依据。这些研究将为蜱媒传染病防控提供新思路与新策略。
蜱病毒组将提升高风险区域预警能力
明确致病病毒在蜱病毒组中的分布特征,可强化高风险区域的监测效能。对蜱活跃区域的监测已实现人群感染的早期发现。通过整合环境、气候与生态数据,结合蜱栖息地适宜性模型,可有效预测病毒的地理分布与传播趋势。这种综合监测方法支持主动的公共卫生响应,实现早期预警并优化防控策略。该技术还能通过识别潜在溢出风险(即使在尚未报告病例的地区),优化疫情暴发时的资源调配。
蜱病毒组将增强病毒溢出传播与致病性预测能力
人工智能(AI)尤其是机器学习(ML)与深度学习(DL)的发展已经改变病毒组学研究。在蜱病毒组研究中,ML方法可提升病毒发现、结构预测、宿主识别及传播建模的效能。AlphaFold与ESM-Fold等工具通过解析宿主互作中的关键分子靶标,正在革新病毒蛋白结构预测领域。基于多组学数据训练的ML模型能预测跨物种传播潜力与宿主屏障突破机制,为病毒适应性与人类感染风险提供关键见解。进一步将预测模型与实验验证相结合,可完善风险评估并优化早期干预措施,全面提升对病毒溢出传播与致病性的预测能力(文本S14)。
数据共享推动跨学科协同研究
建立标准化的蜱病毒组数据存储与共享平台,将促进全球协作与资源整合。共享病毒基因组序列、生态分布数据及分析结果,可提升数据可比性并深化对蜱媒病毒的认知。这种共享机制不仅能提高全球蜱病毒组研究效率,更能为学者提供更全面的病毒谱系、分布与传播机制信息,为蜱媒传染病的预测防控提供重要证据。加强媒介生物学、流行病学、病毒学与生物信息学等多学科合作,将深化对病毒传播机制及病毒-宿主-环境互作的理解。通过这种协同创新,蜱媒病毒的防控工作与基础研究将获得更多支持与发展动力。
代码和数据可用性:
所有使用的数据均可在附件中获得。已准备元数据模板,请从附件3中获取。补充材料(文本、表格、图形摘要、幻灯片、视频、中文翻译版本和更新材料)可在在线DOI或iMeta Science http://www.imeta.science/imetaomics/中找到。
引文格式:
Ye Run-Ze, Nuo Cheng, Yu-Yu Li, Ning Wang, Xiao-Yang Wang, Biao Deng, Yuguo Chen, Li-Li Ren, Wu-Chun Cao. 2025. “Towards tick virome and emerging tick-borne viruses: Protocols, challenges and perspectives.” iMetaOmics 3: e70022. https://doi.org/10.1002/imo2.70022.
作者简介
叶润泽(第一作者)
● 山东大学齐鲁医院博士后,2024年国家博士后创新人才支持计划(A类)获得者。
● 研究方向为新病原体发现与溯源。围绕病毒组学研究,以第一作者(含共同)在New England Journal of Medicine、Lancet Infectious Diseases、Nature Microbiology、Microbiome等期刊发表论文16篇;主持国家重点研发计划子课题1项。
程诺(第一作者)
● 中国医学科学院/北京协和医学院病原生物学研究所在读博士研究生。
● 研究方向为动物源性病毒感染与现场调查。围绕病毒组学研究,共同参与发表SCI论文5篇,以第一申请人申请软件著作权2个。
李宇宇(第一作者)
● 中国医学科学院/北京协和医学院病原生物学研究所在读博士研究生。
● 研究方向为蜱媒病原生态分布与风险预警。围绕病毒组学研究,以第一作者(含共同)在Microbiome、Nature Communications、Journal of Medical Virology期刊发表论文4篇。
曹务春(通讯作者)
● 军事科学院军事医学研究院研究员,国家杰出青年科学基金获得者。现为军事科学院首席专家、病原微生物生物安全全国重点实验室主任。
● 研究方向为新自然疫源性传染病发现与溯源、传染病流行病学侦察预警研究。在Nature、Cell、New England Journal of Medicine、British Medical Journal、Lancet Infectious Diseases、Nature Microbiology等国际顶级学术期刊发表论文。连续入选Elsevier中国高被引学者榜单。获国家科技进步一等奖、二等奖,国家自然科学二等奖。国家自然科学基金创新研究群体负责人,入选国家百千万人才工程,被授予“有突出贡献中青年专家”称号,获全国争先创新奖状,全国抗击新冠肺炎疫情先进个人。
任丽丽(通讯作者)
● 中国医学科学院病原生物学研究所研究员、博士研究生导师,中国医学科学院呼吸道疾病病原组研究重点实验室主任。入选国家高层次人才计划。
● 研究方向是呼吸道感染病原组与致病机制。以第一作者和通讯作者在Lancet、JAMA和Cell Host & Microbe等SCI收录杂志上发表多篇论文。获国家科学技术进步二等奖、中华预防医学会科学技术一等奖,教育部高等学校科学研究优秀成果奖科技进步一等和二等奖等。连续入选科睿唯安年度全球“高被引科学家”榜单。
陈玉国(通讯作者)
● 山东大学齐鲁医院教授,博士生导师,首届国家杰出医师,全国医务名匠,泰山学者攀登计划专家。
● 研究方向聚焦急危重心血管疾病与急危重症医疗大数据人工智能和医工交叉领域,通过多维度研究推动急诊医学临床救治能力提升。主持国家重大重点科研项目7项;以第一/通讯作者在Nature、Circulation、European Heart Journal等期刊发表论文440余篇;主编国家规划教材《急诊医学》(中英文版)及学术专著18部。研究成果获中国药学发展奖-特别贡献奖、省部级科技进步一等奖,入选国家级临床诊疗指南与规范,现担任Emergency and Critical Care Medicine期刊主编。
更多推荐
(▼ 点击跳转)
iMeta | 引用16000+,海普洛斯陈实富发布新版fastp,更快更好地处理FASTQ数据
iMeta | 兰大张东组:使用PhyloSuite进行分子系统发育及系统发育树的统计分析
iMeta | 唐海宝/张兴坦-用于比较基因组学分析的多功能分析套件JCVI
iMeta封面
1卷1期
1卷2期
1卷3期
1卷4期
2卷1期
2卷2期
2卷3期
2卷4期
3卷1期
3卷2期
3卷3期
3卷4期
3卷5期
3卷6期
4卷1期
4卷2期
iMetaOmics封面
1卷1期
1卷2期
2卷1期
期刊简介
“iMeta” 是由威立、宏科学和本领域数千名华人科学家合作出版的开放获取期刊,主编由中科院微生物所刘双江研究员和荷兰格罗宁根大学傅静远教授担任。目的是发表所有领域高影响力的研究、方法和综述,重点关注微生物组、生物信息、大数据和多组学等前沿交叉学科。目标是发表前10%(IF > 20)的高影响力论文。期刊特色包括中英双语图文、双语视频、可重复分析、图片打磨、60万用户的社交媒体宣传等。2022年2月正式创刊!相继被Google Scholar、PubMed、SCIE、ESI、DOAJ、Scopus等数据库收录!2024年6月获得首个影响因子23.8,中科院分区生物学1区Top,位列全球SCI期刊前千分之五(107/21848),微生物学科2/161,仅低于Nature Reviews,学科研究类期刊全球第一,中国大陆11/514!
“iMetaOmics” 是“iMeta” 子刊,主编由中国科学院北京生命科学研究院赵方庆研究员和香港中文大学于君教授担任,目标是成为影响因子大于10的高水平综合期刊,欢迎投稿!
"iMetaMed" 是“iMeta” 子刊,专注于医学、健康和生物技术领域,目标是成为影响因子大于15的医学综合类期刊,欢迎投稿!
iMeta主页:
http://www.imeta.science
姊妹刊iMetaOmics主页:
http://www.imeta.science/imetaomics/
出版社iMeta主页:
https://onlinelibrary.wiley.com/journal/2770596x
出版社iMetaOmics主页:
https://onlinelibrary.wiley.com/journal/29969514
出版社iMetaMed主页:
https://onlinelibrary.wiley.com/journal/3066988x
iMeta投稿:
https://wiley.atyponrex.com/journal/IMT2
iMetaOmics投稿:
https://wiley.atyponrex.com/journal/IMO2
iMetaMed投稿:
https://wiley.atyponrex.com/submission/dashboard?siteName=IMM3
邮箱:
office@imeta.science