一文读懂宏基因组分析套路

很多亲人感觉宏基因组的分析结果内容种类太多,根本学不过来。其实本质上并不复杂,只分为两类:物种组成和功能组成两大类,这是核心结果;再加上开头系统描述和结尾的讨论比较。通常会出现固定套路的4部分结构。

今天就从之前解决的1篇nature, 2篇science, 入手来总结宏基因组分析的基本思路。只有分析思路清楚,结果才更容易説清楚。

文章思路和结果

文章分析思路:整体概述——物种组成——功能组成——关联/因果

文章主要结果

  1. 样本、物种、功能描述
  2. 物种组成整体差异和分组具体差异
  3. 功能组成整体差异和分组具体差异
  4. 环境因子与微生物组的关系

文章套路验证

  • Nature:人类肠道微生物组的肠型

    1. 人类肠道微生物组的物种和功能组成。从样本、物种组成和功能的整体描述;
    2. 肠型的物种组成不同。组间物种组成差异,新方向/领域无分组要根据差异的主成分分组再比较,之后结果的展示方式很多了,如柱状图、箱线图、网络图等;
    3. 肠型间的功能差异。本质上是功能组成的差异,可具体展示差异或特异功能通路COG/KEGG。
    4. 与宿主属性的相关分析。可以简单相关,也可连续数据随机森林回归预测,更可以与己有研究元分析验证假设,方法和思路众多,本质是对结果的验证和升华,进一步突出准确性和意义。
  • Sciences:16S+功能预测

    1. 整体描述:PCoA散点图+热图展示样本随时间存在变化;机器学习建模来根据变化预测时间;
    2. 物种组成:比较不同部分、环境下物种丰度的变化,并使用网络、柱状图展示物种随时间传递的过程、和丰度的变化。
    3. 功能组成:功能整体和局部PCA差示差异的来源,同时挑选与主题相关通路按时间序列呈现拟和曲线
    4. 环境因子关联:如pH、氨、硝酸盐、各种功能通路等属性随时间变化,CCA展示环境因子对微生物组群体结果关系。展示环境因子在主成分间的关系。
  • 3分和30分文章差距在哪里?

宏基因组分析套路

很多朋友感觉宏基因组的分析结果内容种类太多,根本学不过来。其实本质上并不复杂,只分为两类:物种组成和功能组成两大类,它们是核心结果;再加上开头系统描述和结尾的讨论比较。通常会出现固定套路的4部分结构

今天就从之前解读3篇CNS文章(1篇nature, 2篇science) 入手,系统总结宏基因组分析的基本思路。助力大家清楚分析思路,更多精力关注科学问题的解决,做出好结果。

image

文章思路和结果

文章分析思路:整体概述——物种组成——功能组成——关联/因果

文章主要结果

  1. 样本、物种、功能整体内容描述(无新发现则为非重点,版面有限可放附图)
  2. 物种组成整体差异和分组具体差异
  3. 功能组成整体差异和分组具体差异
  4. 环境因子/相关研究与微生物组的关系——关联;无菌体系验证差异物种——因果;

文章套路验证

以下是平台之前导读过的三篇宏基因组CNS文章,都是必读精品,具体内容点击蓝色标题阅读。这里对仅对分析套路进行归纳总结。证明之前提出的4步法分析套路。

这三篇文章一般有3-4个图,完全符合上面提出的4步法。其中图1基本描述不是必须的,有时根据版面的要求可以调整至附图。

Nature:人类肠道微生物组的肠型

  1. 人类肠道微生物组的物种和功能组成。从样本、物种组成和功能的整体描述;
  2. 肠型的物种组成不同。组间物种组成差异,新方向/领域无分组要根据差异的主成分分组再比较,之后结果的展示方式很多,如柱状图、箱线图、网络图等;
  3. 肠型间的功能差异。整体上是功能组成数据PCA展示整体差异,再具体展示差异或特异功能通路COG/KEGG。
  4. 与宿主属性的相关分析。可以简单相关,也可连续数据随机森林回归预测,更可以与己有研究元分析验证假设,方法和思路众多,本质是对结果的验证和升华,进一步突出准确性和意义。

Sciences:16S+功能预测

  1. 整体描述:PCoA散点图+热图展示样本随时间存在变化;机器学习建模:根据菌群结构预测时间;
  2. 物种组成:比较不同部分、环境下物种丰度的变化,并使用网络、柱状图展示物种随时间传递的过程、和丰度的变化;
  3. 功能组成:功能整体和局部PCA差示差异的来源,同时挑选与主题相关通路按时间序列呈现拟和曲线;
  4. 环境因子关联:如pH、氨、硝酸盐、各种功能通路等属性随时间变化,CCA分析环境因子对微生物组群体整体结构关系,展示环境因子在主成分间的相关性大小和方向。

  5. 系统描述:版面有限时,太基本的结果调整至文章附录。

  6. 物种组成:PCoA+冲击图+桑基图期间展示肠道微生物季节周期变化;
  7. 功能组成:碳水化合物相关基因组PCA、季节多样性箱线图,抗性基因以及本研究重点关注的功能类别进行展示;从功能层面突出季节变化的主题;
  8. 差异原因讨论:PCoA轴与国家、年龄、和各菌门比较,进一步阐明差异可能的原因。

仔细读读上面这三篇顶级文章,你会发现套路还是非常固定的。你欠缺的是如何实现这些结果。

如果你自己想学习独立分析微生物组数据,但又存在入门困难,欢迎报名我们在北京鼓楼7月份的宏基因组专题课程!详见 《7月14-22日,北京,微生物组——宏基因组分析专题培训开课啦!》

宏基因组专题培训

在广大粉丝的期待下,《生信宝典》联合《宏基因组》在2018年7月北京鼓楼推出《宏基因组分析专题培训》,大家提供一条走进生信大门的捷径、为同行提供一个宏基因组实战分析学习和交流的机会、助力学员真正理解分析原理和完成实战分析,独创线下集中授课2天+自行练习5天+再集中讲解答疑2天三段式教学,真正实现独立分析大数据。

你能学到什么

当时信息大爆炸时间,专业科研人才必须具备大数据分析解读能力。大数据分析解决所需要求知识多而杂,自学时间成本高。参加培训获得经验、内部资料和代码、高效解决问题是当今科研人员不二的选择。

深彻理解生物测序数据的基本思想

image

宏基因组分析三种模式全面的解决方案,以及结果的统计分析

  • 16S扩增子数据PICRUST预测宏基因组
  • 宏基因组数据Humann2定量物种和功能
  • Denovo宏基因组拼接和binning
  • 结果的差异比较和可视化

image

主讲教师

主讲老师包括中科院微生物所、遗传发育所、基因组所、生物物理所等多名本领域一线技术专家。

助教团队

十余名科学院、清华、北大博士(含在读),轮值讲师和助教,辅助学员学习和矫正培训过程中不足的点。

培训时间

2018-07-14 到 2018-07-15 (线下讲解实战)
2018-07-21 到 2018-07-22 (可线上线下同时,照顾不能长时间在北京的朋友)
每天早9点到晚5点,半封闭式教学
报到时间:开课前的周五晚上准备晚宴欢迎大家,促进相互认识和了解

授课地点

北京市西城区鼓楼明德大厦 (北京市旧鼓楼大街47号院2号楼2010)。

课程价格

  1. 原价 6999 元/人,
    截止 2018-06-29 4199 元/人
    之后恢复原价6999元/人 (住宿自行解决,提供培训期间午餐)
  2. 名额有限,每次课程报名满30人后自动关闭报名通道
  3. 提供易汉博基因科技实习机会或工作机会

暑期促销优惠活动

2018年6月底前报名且成功缴费的用户,不仅可以获得上课的前排座位(座位按报名并成功缴费顺序从前到后龙摆尾式排序),更可同时享受如下四重优惠。

  1. 赠送价值188元线上生信基础课程一门,目前有《应用Python处理生物信息数据和作图》、《生物信息作图系列R、Cytoscape及图形排版》和《转录组高级分析》和《生物信息中的Linux应用》任选其一。
  2. 获赠32G品牌定制U盘 (内含数据资料)。
  3. 多人(N,10>N>1)组团报名并同时缴费,每人还可获得价值N百元的礼品(充值或购物卡)。
  4. 零元学习588元微生物扩增子实战分析,学员预先购买课程,待完成宏基因组线下课程者,返现90%(10%被腾讯课堂扣除)。

*注意事项

  1. 需自备笔记本电脑,系统不限(推荐使用Windows 10系统,8G内存更流畅)。课程实践提供云计算平台。
  2. 培训班所有数据,文档为内部资料,仅供参阅,未经允许不得翻印外传登刊。
  3. 上课期间禁止录音,录像。
  4. 成功付款的学员,若临时有紧急事情不能到来的,可申请延期,更换后续培训班;也可申请退款。
  5. 若开课2周 (含) 前申请退款可退还85%费用;开课3个工作日 (含) 前申请退款退还70%的费用。
  6. 不可先延期再退款。

更多课程的详细介绍,请扫描下方二维码。

image

复制以下链接
http://www.ehbio.com/Training/
点击阅读原文跳转报名页

宏基因组相关学习资源

自学能力强、基础好的同学,如果把我们之前分享的资料全部掌握的话,应该早己成为本领域的专家了。

1. 基础理论教程
- 微生物组入门必读+宏基因组实操课程
- 宏基因组分析教程
- 4500元的微生物组培训资料
- 微生物组助手——最易学的扩增子、宏基因组分析流程

2. 分析实战有参系列
- MetaPhlAn2一条命令获得宏基因组物种组成
- HUMAnN2:人类微生物组统一代谢网络分析2
- 宏基因组有参流程Metagenomics Tutorial (HUMAnN2)

3. 分析实战De novo系列:
- 1背景知识-Shell入门与本地blast实战
- 2数据质控fastqc, Trimmomatic, MultiQC, khmer
- 3组装拼接MEGAHIT和评估quast
- 4基因注释Prokka
- 5基于Kmer比较数据集sourmash
- 6不比对快速估计基因丰度Salmon
- 7bwa序列比对, samtools查看, bedtools丰度统计
- 8分箱宏基因组binning, MaxBin, MetaBin, VizBin
- 9组装assembly和分箱bin结果可视化—Anvi’o
- 10绘制圈图-Circos安装与使用

如果基础知识体系不完善,自学存在困难的小伙伴,急时上车也是不错的选择。

成为实验中不可或缺的人,赶快报名吧!

猜你喜欢

写在后面

为鼓励读者交流、快速解决科研困难,我们建立了“宏基因组”专业讨论群,目前己有国内外1500+ 一线科研人员加入。参与讨论,获得专业解答,欢迎分享此文至朋友圈,并扫码加主编好友带你入群,务必备注“姓名-单位-研究方向-职称/年级”。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍末解决群内讨论,问题不私聊,帮助同行。
image

学习扩增子、宏基因组科研思路和分析实战,关注“宏基因组”
image

点击阅读原文,跳转最新文章目录阅读
https://mp.weixin.qq.com/s/5jQspEvH5_4Xmart22gjMA

©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页