YOLO-V1理解

YOLO-V1是一种实时目标检测算法,它摒弃了传统的区域提议和分类步骤,直接通过网络回归预测物体边界框和类别。核心思想是将输入图像划分为网格,每个网格负责预测两个边界框和相应的置信度。尽管存在对小目标检测的局限性和位置权重不平等问题,但YOLO-V1以其高效和统一的框架在目标检测领域产生了深远影响。
摘要由CSDN通过智能技术生成

YOLO-V1

论文:"You Only Look Once:Unified, Real-Time Object Detection"
论文地址:https://arxiv.org/abs/1506.02640

1. YOLO的核心思想

利用整张图作为网络的输入,直接在输出层回归 bounding box 的位置和 bounding box 的类别。

2. YOLO-V1算法原理

YOLO-V1输入图像默认尺寸为 。利用卷积神经网络进行特征提取,输出图像的尺寸固定为,然后经过卷积层和全连接层,输出特征图大小为,这里30是和检测的类别数量有关系。

在这里插入图片描述


实际操作:YOLO-V1将输入图像划分为的区域,见上图左侧所示,每一个区域对应于最后特征图上的一个点,该点的通道数为30(和检测类别数量有关)。YOLO-V1在每一个区域内预测两个 bounding box,见上图左侧的预测框A和预测框B。这样整张图一共预测个框。如果一个物体的中心点落在了某个区域内,则该区域就负责检测该物体。上图的真实物体框在蓝色区域块内,该区域就负责检测该物体。具体为将该区域预测的两个 bounding box 和真实物体框进行匹配,IoU更大的 bounding box 负

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值