使用OpenCV和MediaPipe实现基于深度学习的人体姿态估计

本文介绍了如何使用MediaPipe和OpenCV库进行人体姿态估计,详细阐述了MediaPipe框架的功能,并展示了如何创建姿势估计器类进行实时预测,最后提供了相关资源链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

没有背景的姿态估计结果。

计算机视觉中最困难的任务之一是确定人体四肢、复杂的自遮挡、自相似部分以及由于服装、体型、照明、以及许多其他因素。人体姿态估计问题可以定义为预测各种人体关键点(关节和地标)位置的计算机视觉技术,例如肘部、膝盖、颈部、肩部、臀部、胸部等。

在今天的文章中,我们将了解使用 MediaPipe 和 OpenCV 库进行基于深度学习的人体姿态估计。

目录

  • 什么是 MediaPipe?

  • 姿态估计问题

  • 实施解决方案

  • 有用的链接

什么是 MediaPipe?

Mediapipe 是一个主要用于构建多模式音频、视频或任何时间序列数据的框架。在 MediaPipe 框架的帮助下,可以为 TensorFlow、TFLite 等推理模型以及媒体处理功能构建 ML 管道。

**注意:**你甚至不需要 GPU 来运行 MediaPipe 实验,因为今天的集成显卡和 CPU 非常适合此解决方案。从逻辑上讲,FPS 会比使用 GPU 低得多。

MediaPipe 提供可定制的 Python 解决方案作为PyPI上的预构建 Python 包,可以简单地使用pip install mediapipe. 它还为用户提供了构建自己的解决方案的工具。有关详细信息,

OpenCV (Open Source Computer Vision Library) 的组成主要包括以下几个部分: 1. **基本库**:提供了一系列图像视频处理函数,如像素操作、颜色空间转换、几何变换、滤波器等。 2. **核心模块**:负责计算机视觉任务的核心算法,如特征检测(SIFT、SURF)、模板匹配、目标跟踪等。 3. **相机接口**:允许用户从各种来源获取视频输入,如摄像头、视频文件或网络流。 4. **机器学习**:虽然不是OpenCV的核心,但它也包含了机器学习相关的工具,例如OpenCV深度学习模块DNN,用于运行预先训练好的卷积神经网络模型。 MediaPipe则是另一个层次更深的框架,其组成更为复杂: 1. **数据流水线**:MediaPipe设计了一种数据流的概念,使得开发者能够组合多个模块形成一个处理链,每个模块可以处理音频、视频、传感器数据等多种类型的数据。 2. **预训练模型**:它内置了许多预训练的计算机视觉机器学习模型,如人体关键点检测、面部识别、手部跟踪等,供开发者直接使用。 3. **模块化组件**:包括姿态估计、文本识别、语音识别等多个独立的模块,开发者可以根据需要选择并串联它们。 4. **跨平台支持**:MediaPipe能够在多个平台上运行,如Android、iOS、WindowsLinux等。 两者都是为了帮助开发者处理多媒体数据,但侧重点不同,OpenCV更基础,适合底层图像处理;MediaPipe则倾向于构建完整的应用程序,提供更高的抽象度易用性。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值