深度学习与传统算法的区别

  1. 数据需求:深度学习算法对大量数据的需求更大,需要大量的标注数据进行训练,而传统算法对数据的需求相对较小。

  2. 特征提取:深度学习算法能够自动学习和提取数据的特征,而传统算法需要手动设计特征提取器。

  3. 灵活性:深度学习算法在处理复杂的非线性问题时表现更加灵活,而传统算法在处理简单问题时可能更有效。

  4. 计算资源:深度学习算法对计算资源的需求更大,需要大量的计算资源进行训练和推断,而传统算法对计算资源的需求相对较小。

  5. 解释性:传统算法通常更容易解释和理解,而深度学习算法通常被认为是“黑盒”,难以解释其决策过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值