-
数据需求:深度学习算法对大量数据的需求更大,需要大量的标注数据进行训练,而传统算法对数据的需求相对较小。
-
特征提取:深度学习算法能够自动学习和提取数据的特征,而传统算法需要手动设计特征提取器。
-
灵活性:深度学习算法在处理复杂的非线性问题时表现更加灵活,而传统算法在处理简单问题时可能更有效。
-
计算资源:深度学习算法对计算资源的需求更大,需要大量的计算资源进行训练和推断,而传统算法对计算资源的需求相对较小。
-
解释性:传统算法通常更容易解释和理解,而深度学习算法通常被认为是“黑盒”,难以解释其决策过程
深度学习与传统算法的区别
最新推荐文章于 2025-04-01 19:17:03 发布