【matlab】【2024年】【优化算法】【黑风筝算法】【BKA】【附带论文中英翻译网页版】【附带论文】

本文介绍了一种受黑风筝行为启发的优化算法BKA,它结合了柯西突变和Leader策略,表现出优秀的全局搜索和收敛性能。BKA在标准测试和实际工程问题中展示出竞争力,尤其是在处理多目标和复杂优化问题上。
摘要由CSDN通过智能技术生成

        本文创新性地提出了黑风筝算法(BKA),这是一种受黑风筝迁徙和掠食行为启发的元启发式优化算法。BKA集成了柯西突变策略和Leader策略,增强了算法的全局搜索能力和收敛速度。这种新颖的组合在探索全球解决方案和利用本地信息之间取得了良好的平衡。在CEC-2022和CEC-2017的标准测试功能集以及其他复杂功能中,BKA分别在66.7%、72.4%和77.8%的案例中取得了最佳性能。通过详细的收敛分析和统计比较验证了算法的有效性。此外,它在解决五个实际工程设计问题中的应用表明了其在解决现实世界中受限挑战方面的实际潜力,并表明与现有的优化技术相比,它具有显着的竞争优势。综上所述,BKA凭借其优异的性能,在解决各种复杂优化问题方面证明了其实用价值和优势。

% Developed in MATLAB R2022b
% Source codes 
% _____________________________________________________
clear  
clc
close all

%% 
pop=30; % Number of search agents
T=500; % Maximum numbef of iterations
F_name='F6'; % Name of the test function
%% 
for i=1:30
[lb,ub,dim,fobj]=Functions_details(F_name);% Load details of the selected benchmark function
[Best_Fitness_BKA,Best_Pos_BKA,Convergence_curve]=BKA(pop,T,lb,ub,dim,fobj);
%% The Black-winged Kite Algorithm's 30 experiments' mean, standard deviation, best value, and worst value
BKAmean = mean(Best_Fitness_BKA);
BKAStd = std(Best_Fitness_BKA);
BKAbest = min(Best_Fitness_BKA);
BKAWorst = max(Best_Fitness_BKA);
BKAResults = [BKAmean,BKAStd,BKAbest,BKAWorst];
end
%% figure
semilogy(1:T,Convergence_curve,'color','r','linewidth',2.5);
title('Convergence curve');
xlabel('Iteration');
ylabel('Best score obtained so far')
%% Display calculation results
display(['The best fitness is:', num2str(BKAbest)]);
display(['The best position is:', num2str(Best_Pos_BKA)]);

        近年来,由于资源匮乏和人们的需求增加(Feng et al. 2024),提高生产效率已成为研究热点(Zhao et al. 2023a, b)。随着技术的进步和问题变得越来越复杂,优化任务经常表现出多目标、大规模、不确定和复杂的特征需要解析(Wan et al. 2023)。在现实世界中,许多问题具有多个优化目标和约束,而传统的优化算法(Inceyol and Cay 2022;Wang et al. 2022) 主要针对单个目标或少数客观问题而设计(Atban et al. 2023;胡 等人,2023 年;Wang 等人,2023a,b)。面对这些具有挑战性的优化任务,传统算法可能无法准确找到最优解,或者求解过程可能过于复杂和耗时。其次,一些问题的搜索空间很大,传统的优化算法发现在这种情况下很难有效地搜索最优解。此外,一旦问题涉及不确定性和模糊性(Berger and Bosetti 2020),传统的优化算法就无法很好地处理它。这是因为传统的优化算法主要基于确定性假设和约束。同时,风险投资(Xu et al. 2023a, b)、供应链管理(Zaman et al. 2023)和资源调度(Al-Masri et al. 2023)等领域始终存在不确定性和随机性。最后,传统的优化算法通常依赖于问题的分析形式,这要求以数学形式明确定义和描述问题(Kumar 等人,2023 年)。 在实际情况下,往往难以用分析方式表达问题,或者问题的目标函数和约束条件错综复杂(Wang et al. 2020)。综上所述,传统的优化算法往往无法满足当前优化任务的需求和挑战。

        在这种情况下,元启发式优化算法(Fan 和 周 2023)因其灵活性和无梯度机制而迅速发展。它们已成为解决提高生产效率问题的重要工具。元启发式优化算法的灵活性使它们能够适应不同的生产环境和问题场景(Melman 和 Evsutin,2023 年)。元启发式优化算法可以根据特定问题的特征搜索和探索问题空间,以找到最佳解决方案或接近最佳解决方案的解决方案(Abdel-Basset 等人,2023a,b,c)。无论是面对产品设计、生产计划、资源配置、供应链管理等问题,元启发式优化算法都能根据实际情况灵活调整优化。

        同时,元启发式优化算法还具有无梯度机制的特点(Liu and Xu 2023),这使得它可以在没有显式梯度信息或连续导数的情况下处理问题。在许多生产环境中,使用传统优化方法通过分析方法获取有关问题的梯度信息是很困难的。元启发式优化算法利用有关问题的局部知识,通过启发式搜索和随机探索进行优化。除了高维和非线性问题外,这种无梯度优化方法还适用于离散和基于约束的问题(Boulkroune 等人,2023 年)。

基于启发式搜索的优化算法称为元启发式优化算法(Wang et al. 2023a, b)。他们通常对目标函数没有任何特殊要求,而是通过模拟自然界中的智能行为(Chen et al. 2023)或其他现象进行搜索。他们更有可能找到一个具有更广泛应用范围的全局最优解决方案,并有一定的概率逃脱局部最优。元启发式优化算法的特点是其全局可靠的搜索能力和鲁棒性(Xu 2023a, b;Zhao et al. 2023a, b),可以在大规模、高维问题中找到最优解,并快速求解不存在或尚未找到多项式时间求解算法的问题。元启发式优化算法的分类图如图1所示。元启发式算法将随机算法与局部算法相结合,以解决具有挑战性的优化问题,其灵感来自自然界中的随机现象(Bingi, et al. 2023)。根据它们的各种灵感来源,它们可以大致分为以下四种类型:

Fig. 1 图1

figure 1

Classification of metaheuristic algorithms
元启发式算法的分类

        该算法是根据生物种群的行为特征设计的。这些模型模拟了生物体的集体智慧和协作策略,能够快速搜索问题空间并找到全局最优或更好的近似解决方案。生物启发优化模型在处理连续和全局搜索问题方面表现良好。Zamani et al. ( 2022) 提出了一种新型的生物启发算法,其灵感来自椋鸟在令人惊叹的杂音过程中的行为,名为 Starling Murmuration Optimizer (SMO),以解决复杂的工程优化问题,作为元启发式算法的最合适应用。SMO 引入了动态多群结构和三种新的搜索策略:分离、潜水和旋转。沙猫群优化(Seyyedabbasi 和 Kiani 2023)是一种基于沙猫自然行为的元启发式算法。该算法受到沙猫识别低频噪声能力的影响。由于其独特的特征,沙猫可以在地上和地下找到猎物。松鼠搜索算法 (SSA) (Jain et al. 2019) 是一种基于野生松鼠摄食习惯的单目标优化问题解决启发式算法。该算法模拟松鼠在寻找食物时的搜索策略,通过不断调整搜索位置和范围,逐渐接近最优解。为了实现优化目标,Aquila Optimizer (AO) (Abualigah et al. 2021) 主要模仿老鹰在捕获猎物时的行为。具有较强的优化能力和较快的收敛速度。Sea Horse Optimizer (SHO) 的灵感来源 (Zhao et al. 2023a, b) 来自海马体在自然界中的运动、捕食和繁殖行为。非洲秃鹫的觅食和导航习性是非洲秃鹫优化算法 (AVOA) 的基础(Abdollahzadeh 等人,2021 年)。粒子群优化(PSO)(Kennedy and Eberhart 1995)是一种基于群体协作的搜索算法,通过模拟鸟群的觅食行为。变色龙群算法 (CSA) (Braik 2021) 模拟了变色龙在树木、沙漠和沼泽内外的动态觅食行为。蜉蝣算法 (MA) (Zervoudakis and Tsafarakis 2020) 的灵感来自蜉蝣的飞行行为和交配过程。野马的生活和行为激发了野马优化器 (WHO) 的灵感(Naruei 和 Keynia 2022)。蜘蛛黄蜂优化器 (SWO) (Abdel-Basset et al. 2023b) 是基于雌性蜘蛛蜂的狩猎、筑巢和交配行为提出的。Coati 优化算法 (COA) (Dehghani et al. 2022) 的灵感来自 coatis。灰狼的社会结构和狩猎策略是灰狼优化 (GWO) 算法的基础(Mirjalili 等人,2014 年)。海洋捕食者算法 (MPA) (Faramarzi et al. 2020a, b) 从海洋捕食者的猎物狩猎布朗和列维运动中汲取灵感。蚂蚁狮子优化器 (ALO) (Mirjalili 2015) 是根据蚂蚁在自然行为中如何在巢穴和食物之间导航而建模的。座头鲸的泡泡网狩猎技术和自然行为是鲸鱼优化算法(WOA)的基础(Mirjalili和Lewis 2016)。蒲公英优化器 (DO) (Zhao et al. 2022) 被提出来模拟蒲公英种子通过风长距离飞行的过程。 该算法考虑了风速和天气两个主要因素,并引入了布朗运动和列维飞行来描述种子的运动轨迹。金豺优化 (GJO) (Chopra and Ansari 2022) 的灵感来自自然界中金豺的合作狩猎行为。

下载地址(非免费):

https://download.csdn.net/download/wq6qeg88/89046488

  • 7
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

资源存储库

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值